首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antiserum was raised in rabbits against a bile canalicular glycoprotein of Mr = 110,000 purified to homogeneity from of rat liver. The antisera specifically immunoprecipitated a Mr = 110,000 polypeptide from hepatocytes metabolically labeled with [35S]methionine. When hepatocytes in primary culture were incubated with tunicamycin before labeling with [35S]methionine in the presence of tunicamycin, the major polypeptide immunoprecipitated by the specific antiserum from Triton X-100 extracts of cells had a molecular weight of 59,000. Enzymatic removal of N-linked carbohydrates from the Mr = 110,000 glycoprotein by N-glycanase digestion also yielded a polypeptide with minimum Mr = 59,000. In pulse-chase experiments using [35S]methionine, the Mr = 110,000 protein detected by the specific antisera first appears as Mr = 85,000 and 75,000 intermediate species which are endoglycosidase H sensitive. The Mr = 85,000 intermediate form is lost first with time followed by the Mr = 75,000 form giving rise to the Mr = 110,000 form that is endoglycosidase H resistant. Neuraminidase digestion of the Mr = 110,000 form generated an Mr 85,000 form but with a different carbohydrate structure than the intermediate Mr 85,000 form detected in the pulse-chase experiments. The time required to accomplish the processing of the Mr = 85,000 and 75,000 forms is relatively slow. Finally, the terminal sugars are added and the mature Mr = 110,000 glycoprotein is rapidly transported to the cell surface. A minimum time of 90 min is required for the Mr = 110,000 bile canalicular glycoprotein to be synthesized, processed, and reach the cell surface which is long relative to the time required (10 min) for another domain-specific protein, the receptor for asialoglycoproteins, to reach the sinusoidal surface. The Mr = 110,000 bile canalicular glycoprotein turns over in the bile canalicular domain with a half-life of 43 h while the asialoglycoprotein receptor turns over in the sinusoidal domain with a half-life of 23 h.  相似文献   

2.
A procedure is described that allows the characterization of the molecular forms of beta-hexosaminidase and cathepsin D in controls and pathological specimens of human serum and human urine. The following observations were made. (1) In human serum, beta-hexosaminidase (alpha- and beta-chain) and cathepsin D are present predominantly in their high-molecular-weight precursor forms. In human urine, these enzymes exist as both precursor and mature forms. (2) Cathepsin D precursor from serum and urine differs in the number of oligosaccharides that are sensitive to endo-beta-N-acetylglucosaminidase H. Therefore the urine enzyme is not likely to originate from the serum. (3) The presence exclusively of precursors of beta-hexosaminidase and of cathepsin D in the sera of patients with hepatitis suggests that in hepatitis secretion of lysosomal enzymes is elevated, rather than the enzymes leaking from damaged cells. (4) In the urine of patients with nephrotic syndrome, beta-hexosaminidase and cathepsin D are present in grossly elevated amounts, but do not differ in the polypeptide patterns from controls. (5) In urine from a patient with mucolipidosis II, the elevated activity of beta-hexosaminidase is accounted for mainly by the precursor forms. Mature beta-chain of beta-hexosaminidase is lacking, and incompletely processed beta-hexosaminidase polypeptides are present. Both the precursor and the mature forms of cathepsin D are increased. They contain only complex oligosaccharides.  相似文献   

3.
Myeloperoxidase precursors incorporate heme   总被引:1,自引:0,他引:1  
Myeloperoxidase of neutrophil granulocytes is synthesized as a larger molecular weight precursor, which is processed to yield mature polypeptides with molecular weights of 62,000 and 12,000. We have investigated the incorporation of heme into myeloperoxidase of the human promyelocytic HL-60 cell line labeled with 5-amino[14C]levulinic acid. Myeloperoxidase was isolated by immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and radiolabeled myeloperoxidase was visualized by fluorography. A 3-h pulse labeling with 5-amino[14C]levulinic acid resulted in labeling of the Mr 90,000 and Mr 82,000 precursor polypeptides. During subsequent chase of the label, conversion to mature radioactive heavy Mr 62,000 subunit was observed but no radioactivity was associated with the mature small Mr 12,000 subunit. Peptide mapping after proteolytic cleavage with V8 proteinase showed that 5-amino[14C]levulinic acid was associated with a single Mr 23,000 polypeptide while multiple radioactive fragments were visible after proteolytic cleavage of myeloperoxidase biosynthetically labeled with [14C]leucine. That 5-amino[14C]levulinic acid was specifically incorporated into heme of myeloperoxidase was also demonstrated by dissociation under reducing conditions which yielded 14C-labeled heme as indicated by reversed phase high pressure liquid chromatography. The ionophore monensin and the base chloroquine, which block processing of myeloperoxidase, did not affect the incorporation of 5-amino[14C]levulinic acid, further supporting the notion that the incorporation of heme is independent of final processing of the polypeptide. Our data establish that heme is incorporated into myeloperoxidase already at the level of the precursor and that processing yields a heme-containing heavy subunit and a heme-free small subunit.  相似文献   

4.
ABSTRACT. The proteolytic processing and secretion of a lysosomal enzyme, acid α-glucosidase, was studied by pulse-chase labeling with [35S]methionine in Tetrahymena thermophila CU-399 cells treated with ammonium chloride. This cell secreted a large amount of acid α-glucosidase into the cultured medium during starvation. the secretion was found to be repressed by addition of ammonium chloride (NH4Cl). Acid α-glucosidase was produced as a precursor form (108 kDa) and then processed to a mature polypeptide (105 kDa) within 60 min. This mature enzyme was secreted into the media within 2-3 h after chase, whereas the precursor form was not secreted by either control cells or NH4Cl-treated cells. NH4Cl did not affect the processing of the precursor acid α-glucosidase. Processing profile of this enzyme was apparently indistinguishable from that of the mutant MS-1 defective in lysosomal enzyme secretion. Furthermore, the purified extracellular (CU-399) and intracellular (MS-1) acid a-glucosidases were the same in molecular mass (105 kDa) and enzymatic properties. They contained no mannose 6-phosphate residues in N-linked oligosaccharides. These results suggested that unlike mammalian cells, Tetrahymena acid α-glucosidase may be transferred to lysosomes by a mannose 6-phosphate receptor-independent mechanism, and also that low pH was not essential for the proteolytic processing of precursor polypeptide.  相似文献   

5.
Two different forms of alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein were found in primary cultures of rat hepatocytes. After a 2.5-h labeling period with [35S]methionine the high-mannose-type precursor of alpha 1-proteinase inhibitor (Mr 49000) and alpha 1-acid glycoprotein (Mr 39 000) and the mature-complex-type alpha 1-proteinase inhibitor (Mr 54 000) and alpha 1-acid glycoprotein (Mr 43 000-60 000) could be immunoprecipitated from the cells, but only the complex-type forms of the two glycoproteins were secreted into the hepatocyte media. When hepatocytes were incubated with the mannosidase I inhibitor 1-deoxymannojirimycin at a concentration of 4 mM, the 49 000-Mr form of alpha 1-proteinase inhibitor and the 39 000-Mr form of alpha 1-acid glycoprotein could be detected in the cells as well as in their media. Neither the secretion of alpha 1-proteinase inhibitor nor that of alpha 1-acid glycoprotein was impaired by 1-deoxymannojirimycin. While alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by control cells, were resistant to endoglucosaminidase H, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by hepatocytes treated with 4 mM 1-deoxymannojirimycin, could be deglycosylated by endoglucosaminidase H. When the [3H]mannose-labeled oligosaccharides of alpha 1-proteinase inhibitor, secreted by 1-deoxymannojirimycin-treated hepatocytes, were cleaved off by endoglucosaminidase H and analyzed by Bio-Gel P-4 chromatography, they eluted at the position of Man9GlcNAc, indicating that mannosidase I had been efficiently inhibited. 1-Deoxymannojirimycin did not inhibit the synthesis or the cotranslational N-glycosylation of alpha 1-proteinase inhibitor or alpha 1-acid glycoprotein.  相似文献   

6.
Hepatic lipase, a glycoprotein synthesized and secreted by the hepatocyte, binds to sinusoidal endothelium where it is involved in metabolism of lipoprotein phospholipid and triglyceride. To better understand the regulation of hepatic lipase, we investigated the synthesis, post-translational processing, and secretion of the enzyme by isolated rat hepatocytes. Metabolically labeled [35S]methionine hepatic lipase protein, produced by the collagenase-dispersed hepatocytes, was immunoisolated from detergent-solubilized cells and incubation medium at designated times, using a polyclonal rabbit anti-rat hepatic lipase antibody raised against hepatic lipase purified to homogeneity from rat liver post-heparin perfusates. Following polyacrylamide gel electrophoresis and fluorography, radiolabeled hepatic lipase was quantitated by densitometry. Newly synthesized hepatic lipase was rapidly secreted and accumulated in the medium as a 59,000-dalton protein in a manner consistent with a constitutive process. An intracellular 53,000-dalton precursor of the mature 59,000-dalton hepatic lipase was identified by immunoprecipitation. The 53,000-dalton form could also be generated by endoglycosidase digestion of the secreted 59,000-dalton protein. In pulse-chase experiments, the 53,000-dalton protein was converted into the 59,000-dalton form. A 47,000-dalton form of hepatic lipase was immunoisolated from cell lysates only after tunicamycin treatment and could be generated from the secreted 59,000-dalton enzyme by prolonged endoglycosidase digestion. These data show that hepatic lipase is synthesized and rapidly secreted by isolated rat hepatocytes. Further, an intracellular 47,000-dalton precursor peptide can be identified after tunicamycin treatment, which may represent the hepatic lipase polypeptide, presumably after removal of its signal sequence; a 53,000-dalton partially glycosylated peptide exists as a major precursor form in the cell; and the mature 59,000-dalton hepatic lipase is present in the hepatocyte, but it is rapidly secreted.  相似文献   

7.
Antisera to the human erythrocyte Glc transporter immunoblotted a polypeptide of Mr 55,000 in membranes from human hepatocarcinoma cells, Hep G2, human fibroblasts, W138, and murine preadipocytes, 3T3-L1. This antisera immunoprecipitated the erythrocyte protein which had been photoaffinity labeled with [3H]cytochalasin B, immunoblotted its tryptic fragment of Mr 19,000, and immunoblotted the deglycosylated protein as a doublet of Mr 46,000 and 38,000. This doublet reduced to a single polypeptide of Mr 38,000 after boiling. When Hep G2, W138, and 3T3-L1 cells were metabolically labeled with L-[35S]methionine for 6 h, a broad band of Mr 55,000 was immunoprecipitated from membrane extracts. In pulse-chase experiments, two bands of Mr 49,000 and 42,000 were identified as putative precursors of the mature transporter. The t1/2 for mature Glc transporter was 90 min for Hep G2 cells that had been starved for methionine (2 h) and pulsed for 15 min with L-[35S]methionine. Polypeptides of Mr 46,000 and 38,000 were immunoprecipitated from Hep G2 cells that had been metabolically labeled with L-[35S]methionine in the presence of tunicamycin. This doublet reduced to the single polypeptide of Mr 38,000 after boiling. In the absence of tunicamycin, but not in its presence, mature polypeptide of Mr 55,000 was immunoprecipitated from Hep G2 cells metabolically labeled with D-[3H]GlcN. A polypeptide of Mr 38,000 was observed in boiled immune complexes from the in vitro translation products of Hep G2, W138, and 3T3-L1 cell RNA. Dog pancreatic microsomes cotranslationally, but not posttranslationally, converted this to a polypeptide of Mr 35,000. A model for Glc transporter biogenesis is proposed in which the primary translation product of Mr 38,000 is converted by glycosylations to a polypeptide of Mr 42,000. The latter is then processed via heterogeneous complex N-linked glycosylations to form the mature Glc transporter, Mr 55,000.  相似文献   

8.
During transit through the epididymis, spermatozoa acquire fertilizing the cell surface exhibits an altered glycoprotein pattern. Epididymal cells and their secretions contribute to these sperm-surface changes. To examine this process, epithelial cells from rat caput and cauda epididymidis were cultured and examined for the synthesis, processing and secretion of two glycoprotein-modifying enzymes, beta-galactosidase and beta-glucuronidase. Cells were cultured four days, incubated with D-2-[3H] mannose and L-[35S] methionine, and placed in isotope-free media. Levels of both cellular and secreted beta-galactosidase and beta-glucuronidase were determined by immunoprecipitation of cell homogenates or medium, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scintillation counting of bands. During a 1-h pulse, both caput and cauda cells synthesize two precursor forms of beta-galactosidase (Mr = 84,000 and 87,000), which are processed to the mature (Mr = 63,000) enzyme during a 24-h chase. Caput cells release a high molecular weight (HMW) form (Mr = 90-100,000) and mature beta-galactosidase into the media, but not the Mr = 84-87,000 precursor. On the other hand, cauda cells release mostly mature beta-galactosidase. Ratios of radiolabeled mannose/methionine demonstrate a 7-fold greater mannose content in the cellular precursor of beta-galactosidase than in total protein. Another glycosidase, beta-glucuronidase, is synthesized as a Mr = 78,000-precursor which is processed to the mature Mr = 72,000 form. Medium in which caput and cauda cells were cultured contains both mature enzyme and a Mr = 94,000 form, but no 78,000-precursor form. Ratios of radiolabeled mannose/methionine in the cellular precursor of beta-glucuronidase are 2-fold greater than ratios in the total glycoprotein. Secretion is the major pathway of turnover for several epididymal glycosidases, since more than 50% of the total is secreted/day. These results indicate that cultured epithelial cells from the epididymis synthesize glycosidases and that processing and release differ, depending on the enzyme and the epididymal segment from which the epithelial cells were isolated.  相似文献   

9.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

10.
Rabbit cardiac cathepsin D exists as multiple isomeric forms of Mr = 48,000 within cardiac tissue. Their mechanism of formation and their functional role in cardiac protein degradation are unknown. We have previously demonstrated that cathepsin D is initially synthesized as an Mr = 53,000 precursor that is processed by limited proteolysis within cardiac lysosomes to the Mr = 48,000 active forms of the enzyme. To determine if the multiple forms of active cathepsin D originate from a common precursor, isolated perfused Langendorff rabbit hearts were labeled in pulse (15 or 30 min) and pulse-chase (30 or 150 min) experiments with [35S]methionine. Newly synthesized cathepsin D was isolated by butanol/Triton X-100 extraction and immunoadsorption with anti-cathepsin D IgG-Sepharose, and the isomeric forms were separated by two-dimensional electrophoresis and fluorography. After 15- and 30-min pulse perfusions, 35S-labeled cathepsin D appeared as a single precursor form (Mr = 53,000, pI = 6.6). After 30-min pulse and 30-min chase, the precursor was modified to yield multiple precursor forms, all with molecular weight 53,000, but with differing pI values (6.6-6.0). After 30-min pulse and 150-min chase perfusion, multiple forms of both precursor and proteolytically processed active cathepsin D (Mr = 48,000, pI = 6.2-5.6) were detected. The 35S-labeled, proteolytically processed forms of active cathepsin D co-migrated with the major cathepsin D forms present in cardiac tissue. Subcellular fractionation and perfusions in the presence of chloroquine demonstrated that the multiple precursor forms of cathepsin D originated in a nonlysosomal intracellular compartment. Thus, the multiple forms of active cathepsin D originate from a common high molecular weight precursor, and their synthesis occurs prior to the limited proteolysis of the precursor in cardiac lysosomes.  相似文献   

11.
12.
In cultured human fibroblasts we observed that monensin, a Na+/H+-exchanging ionophore, (i) inhibits mannose 6-phosphate-sensitive endocytosis of a lysosomal enzyme, (ii) enhances secretion of the precursor of cathepsin D, while inhibiting secretion of the precursors of beta-hexosaminidase, (iii) induces secretion of mature beta-hexosaminidase and mature cathepsin D, and (iv) inhibits carbohydrate processing in and proteolytic maturation of the precursors remaining within the cells; this last effect appears to be secondary to an inhibition of the transport of the precursors. If the treated cells are transferred to a monensin-free medium, about half of the accumulated precursors are secreted, and the intracellular enzyme is converted into the mature form. Monensin blocks formation of complex oligosaccharides in lysosomal enzymes. In the presence of monensin, total phosphorylation of glycoproteins is partially inhibited, whereas the secreted glycoproteins are enriched in the phosphorylated species. The suggested inhibition by monensin of the transport within the Golgi apparatus [Tartakoff (1980) Int. Rev. Exp. Pathol. 22, 227-250] may be the cause of some of the effects observed in the present study (iv). Other effects (i, ii) are rather explained by interference by monensin with the acidification in the lysosomal and prelysosomal compartments, which appears to be necessary for the transport of endocytosed and of newly synthesized lysosomal enzymes.  相似文献   

13.
The processing and intracellular transport of myeloperoxidase were studied in the human promyelocytic leukaemia cell line HL-60 and in normal marrow cells labelled with [35S]methionine or [14C]leucine. Myeloperoxidase was precipitated with antimyeloperoxidase serum; the immunoprecipitates were subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and radiolabelled myeloperoxidase visualized by fluorography. During a 1 h pulse, myeloperoxidase was labelled in a chain of apparent Mr 90 000. With a subsequent chase, the Mr 90 000 polypeptide disappeared and was replaced by chains of Mr 62 000 and 12 400 corresponding roughly to the size of neutrophil myeloperoxidase subunits. The identification of the radioactive polypeptides as different forms of myeloperoxidase was established also by the similarity in patterns generated by partial proteolysis with V8 proteinase from Staphylococcus aureus. Processing of myeloperoxidase in HL-60 was slow; mature polypeptides were significantly increased only after 6 h. Another myeloperoxidase chain of apparent Mr 82 000 was an intermediate precursor or degradation form. Pulse-chase experiments in combination with sucrose-density-gradient separations of homogenates showed that the Mr 90 000 precursor was located in light density organelles only and not in granule fractions, whereas the Mr 82 000 precursor was located only in intermediate density organelles, suggesting that the latter is a product of the former. Processed mature myeloperoxidase was concentrated in the granule fraction, but some occurred in lower density organelles, which may indicate processing during intracellular transport. Only the Mr 90 000 polypeptide was secreted into the culture medium; this was also the only form found in the cytosol fraction.  相似文献   

14.
Lysosomal enzymes have been shown to be synthesized as microsomal precursors, which are processed to mature enzymes located in lysosomes. We examined the effect of ammonium chloride on the intracellular processing and secretion of two lysosomal enzymes, beta-glucuronidase and beta-galactosidase, in mouse macrophages. This lysosomotropic drug caused extensive secretion of both precursor and mature enzyme forms within a few hours, as documented by pulse radiolabeling and molecular weight analysis. The normal intracellular route for processing and secretion of precursor enzyme was altered in treated cells. A small percentage of each precursor was delivered to the lysosomal organelle slowly. Most precursor forms traversed the Golgi apparatus, underwent further processing of carbohydrate moieties, and were then secreted in a manner similar to secretory proteins. The lag time for secretion of newly synthesized beta-galactosidase precursor was notably longer than that for the beta-glucuronidase precursor. The source of the secreted mature enzyme was the lysosomal organelle. Macrophages from the pale ear mutant were markedly deficient in secretion of mature lysosomal enzyme but secreted precursor forms normally. These results suggest that ammonia-treated macrophages contain two distinct intracellular pathways for secretion of lysosomal enzymes and that a specific block in the release of lysosomal contents occurs in the pale ear mutant.  相似文献   

15.
We have purified beta-galactosidase and beta-glucuronidase from macrophages of thioglycollate-treated mice using concanavalin A chromatography and immunoprecipitation. The apparent molecular weight of the beta-galactosidase subunit, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, changed during a long term pulse-chase experiment. Following a 1-h pulse with [3H]leucine, radiolabel was present exclusively in an Mr = 82,000 form. However, after a 3-h chase in medium containing unlabeled leucine, most label migrated at Mr = 63,000, and at 24 h, all label was in the Mr = 63,000 form. Electrophoresis of peptides produced by cyanogen bromide cleavage of immunoprecipitates demonstrated structural similarities between precursor and mature forms. A mutation in the mouse, which is known to depress the rate of synthesis of beta-galactosidase in many cell types, proportionately decreased incorporation of [3H]leucine into both the Mr = 82,000 and 63,000 forms. Therefore, by kinetic, structural, and genetic evidence, the large molecular weight beta-galactosidase is a precursor of mature macrophage enzyme. No precursor of the Mr = 75,000 subunit of beta-glucuronidase was detected.  相似文献   

16.
The biosynthesis of thrombospondin, a glycoprotein first described in platelets, has been studied in human endothelial cells. This glycoprotein has a molecular mass of 450 kDa. It is secreted and incorporated into the extracellular matrix of several cell types in culture. Pulse-chase experiments with [3H]leucine were performed and the synthesis and secretion of the glycoprotein was studied by immunoprecipitation and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results of these experiments show that the three subunits of thrombospondin are identical in molecular mass. During synthesis there is a small but significant increase in molecular mass within 20 min after pulse labeling. The early form of thrombospondin is sensitive to endoglucosaminidase H treatment, indicating that a transformation of the oligosaccharide structures from 'high-mannose' to 'complex' structures takes place. Within 60 min after synthesis only the mature form of the glycoprotein is secreted into the medium. In the presence of tunicamycin, an inhibitor of N-glycosylation, there is a reduction in molecular mass of the subunit from 165 kDa to 155 kDa. Pulse-chase experiments in the presence of tunicamycin supported the conclusion that the carbohydrate part is processed during biosynthesis. Inhibition of glycosylation had a pronounced effect on the secretion of thrombospondin. The decreased occurrence of thrombospondin in the culture medium seemed to be due to a high intracellular degradation rate of unglycosylated thrombospondin. Characterization of the glycopeptide structures of thrombospondin metabolically labeled with [3H]mannose by Bio-Gel P-4 and concanavalin-A-Sepharose column chromatography revealed that the oligosaccharide structures of the cellular and secreted forms of thrombospondin differ in their composition.  相似文献   

17.
Myeloperoxidase, stored in azurophil granules of neutrophils, is synthesized in promyelocytes as a larger molecular weight precursor, which is processed to yield a transient Mr 82 000 intermediate and mature polypeptides with molecular weights of 62 000 and 12 000. We have tried to define subcellular sites for processing using metabolic labelling of the promyelocytic leukemia cell line HL-60 in combination with subcellular fractionation on a Percoll gradient. A reasonable separation was achieved between azurophil granules, Golgi elements and endoplasmic reticulum. The finding of almost exclusively fully processed myeloperoxidase in granules and a mixture of unprocessed and processed polypeptide in fractions enriched in Golgi elements suggests that processing occurred mainly in pregranular structures. Monensin, which exchanges protons for Na+, and the base chloroquine blocked processing probably by inhibition of transport through the Golgi apparatus. However, the lysosomotropic NH4+ cation did not inhibit processing or transport indicating that processing is not necessarily influenced by pH-dependent mechanisms. Results from digestion with endoglycosidase H, incubation with tunicamycin and metabolic labelling with [3H]mannose indicated that myeloperoxidase contained high mannose oligosaccharide side chains. Also [32P]phosphate incorporated into Mr 90 000 and Mr 62 000 myeloperoxidase was susceptible to endoglycosidase H indicating that oligosaccharide side chains are modified by phosphorylation as in lysosomal enzymes. Thus, even if myeloperoxidase contained mannose 6-phosphate residues, these may not necessarily be involved in directing transport to the azurophil granules.  相似文献   

18.
Polyadenylated RNA prepared from neonatal rat muscle was translated in a rabbit reticulocyte cell-free system. Two sarcoplasmic reticulum proteins, the Ca2+ + Mg2+-dependent adenosine triphosphatase (ATPase) and calsequestrin, were isolated from the translation mixture by immunoprecipitation, followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The [35S]methionine-labeled translation products were characterized by molecular weight, peptide mapping, and NH2-terminal sequence analysis. The ATPase synthesized in the cell-free system was found to have the same molecular weight (Mr = 100,000) and [35S]-methionine-labeled peptide map as the mature ATPase. The methionine residue present at the NH2 terminus of the mature ATPase was donated by initiator methionyl-tRNArMet and it became acetylated during translation. These results suggest that the ATPase was synthesized without an NH2-terminal signal sequence. Calsequestrin (Mr - 63,000) was synthesized as a higher molecular weight precursor (Mr = 66,000) that contained an additional [35S]methionine-labeled peptide when compared to mature calsequestrin. The NH2-terminal sequence of the precursor was different from the mature protein. The precursor was processed to a polypeptide with a molecular weight identical with mature calsequestrin when microsomal membranes prepared from canine pancreas were included during translation. These results show that calsequestrin is synthesized with an NH2-terminal signal sequence that is removed during translation. These data add to the evidence that the ATPase and calsequestrin follow distinctly different biosynthetic pathways, even though, ultimately, they are both located in the same membrane.  相似文献   

19.
A Miyajima  M W Bond  K Otsu  K Arai  N Arai 《Gene》1985,37(1-3):155-161
We have constructed a general expression vector which allows the synthesis and secretion of processed gene products in Saccharomyces cerevisiae. This vector contains yeast DNA, including the promoter of the mating pheromone (alpha-factor), its downstream leader sequence, and the TRP5 terminator. A cDNA [encoding mature mouse interleukin-2 (IL-2); Yokota et al., Proc. Natl. Acad. Sci. USA 82 (1984) 68-72] was fused immediately downstream to the alpha-factor leader sequence. The resulting recombinant plasmid directed the synthesis of mature mouse IL-2 in S. cerevisiae, with most of the T-cell growth-factor (TCGF) activity secreted into the culture fluid and extracellular space. TCGF activities in the cell extract, as well as in the culture fluid, increased in parallel with cell growth. Production of mature mouse IL-2 was inhibited by tunicamycin (TM), with precursor molecules accumulating in the cell extract. The precursor was processed accurately at the junction between the alpha-factor peptide leader sequence and the coding sequence downstream, yielding mature IL-2. The Mr of the secreted mouse IL-2 determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) was 17 kDal, a value expected for the mature mouse IL-2 polypeptide based on the nucleotide (nt) sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号