首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Conflicting perceptions of past and present rangeland condition and limited historical data have led to debate regarding the management of vegetation in pastoral landscapes both internationally and in Australia. In light of this controversy we have sought to provide empirical evidence to determine the trajectory of vegetational change in a semi‐arid rangeland for a significant portion of the 20th century using a suite of proxy measures. Location Ambathala Station, approximately 780 km west of Brisbane, in the semi‐arid rangelands of south‐western Queensland, Australia. Methods We excavated stratified deposits of sheep manure which had accumulated beneath a shearing shed between the years 1930 and 1995. Multi‐proxy data, including pollen and leaf cuticle analyses and analysis of historical aerial photography were coupled with a fine resolution radiocarbon chronology to generate a near annual history of vegetation on the property and local area. Results Aerial photography indicates that minor (< 5%) increases in the density of woody vegetation took place between 1951 and 1994 in two thirds of the study area not subjected to clearing. Areas that were selectively or entirely cleared prior to the 1950s (approximately 16% of the study area) had recovered to almost 60% of their original cover by the 1994 photo period. This slight thickening is only partially evident from pollen and leaf cuticle analyses of sheep faeces. Very little change in vegetation is revealed over the nearly 65 years based on the relative abundances of pollen taxonomic groups. Microhistological examination of sheep faeces provides evidence of dramatic changes in sheep diet. The majority of dietary changes are associated with climatic events of sustained above‐average rainfall or persistent drought. Most notable in the dietary analysis is the absence of grass during the first two decades of the record. Main conclusions In contrast to prevailing perceptions and limited research into long‐term vegetation change in the semi‐arid areas of eastern Australia, the record of vegetation change at the Ambathala shearing shed indicates only a minor increase in woody vegetation cover and no decrease in grass cover on the property over the 65 years of pastoral activity covered by the study. However, there are marked changes in the abundance of grass cuticles in sheep faeces. The appearance and persistence of grass in sheep diets from the late 1940s can be attributed to the effects of periods of high rainfall and possibly some clearing and thinning of vegetation. Lower stock numbers may have allowed grass to persist through later drought years. The relative abundances of major groups of plant pollen have not changed significantly over the past 65 years.  相似文献   

2.
3.
When vegetation trends over time are analysed from an appropriate long‐term perspective using palaeoecological records, the concept of potential natural vegetation (PNV) is unsupported because of continual vegetation changes driven by natural or anthropic forcings. However, some palaeoecological records show long‐lasting (i.e. millennial) vegetation stability at multidecadal to centennial time scales in the absence of natural and human drivers of change, which fits within the definition of PNV. A more detailed palaeoecological analysis of these records shows that they are an exception rather than a rule, and that they cannot be differentiated from other transient ecological states. Therefore, long records of vegetation stability cannot be considered to be valid evidence for PNV. From a palaeoecological perspective, the PNV concept is concluded to be unnecessary, even in cases of multidecadal to centennial vegetation stability in the absence of environmental disturbance.  相似文献   

4.
Understanding stable isotope fractionation in trophic networks is important for the interpretation of stable isotope composition of ecosystem components. This work explores the influence of grazing pressure on the nitrogen isotope composition (?? 15N) of vegetation (standing biomass), soil, and sheep??s faeces and wool in a three-years (2005?C2007) experiment with different stocking rates (0.375?C2.25 sheep ha-1 year-1) in semi-arid Inner Mongolia grassland. The 15N of wool (from a yearly shearing) reflects vegetation at the whole-year grazing grounds-scale while faeces reflect that of the area grazed within a few days. Stocking rate had no effect on ?? 15N of vegetation and soil, and sheep??s faeces and wool, although nitrogen content of bulk vegetation increased with stocking rate. Furthermore, ?? 15N of vegetation and diet did not differ between stocking rates. Hence, 15N fractionations between vegetation and faeces (??veg-faeces), vegetation and wool (?? veg-wool), faeces and soil (?? faeces-soil) and soil and vegetation (?? soil-veg) were constants, with ?? veg-faeces?=?3.0?? (±0.1??, 95% confidence interval), ?? veg-wool?=?5.3?? (±0.1??), ?? faeces-soil?=?1.1?? (±0.4??) and ?? soil-veg?=?-4.1?? (±0.3??). This finding is useful as it means that ?? 15N of wool or faeces can be used to estimate the 15N of grazed vegetation, even if grazing pressure is unknown.  相似文献   

5.
C. Skarpe 《应用植被学》2000,3(2):261-268
Abstract. It is remarkable that after many thousands of years of pastoralism in arid and semi‐arid savannas, there is still no clear answer to the basic question: Does livestock grazing have more than a marginal effect on the dynamics of arid and semi‐arid land vegetation? A small study of semi‐arid savanna vegetation along a spatial gradient in grazing pressure, repeated three times over 19 years is used as a basis for discussing the behaviour of dry land vegetation under heavy grazing. Three basic theories are compared: (1) the theory that heavy grazing causes desertification; (2) the theory that heavy grazing causes no directed change in the vegetation of arid and semi‐arid rangelands; and (3) the theory that heavy grazing leads to a switch between alternative states of vegetation. On the basis of the current data the first two theories are rejected, but the conclusion is that there is much evidence for a more complex behaviour of dry rangelands under grazing than what is accommodated in any of the three theories. Probably, site‐specific properties including interactive and indirect effects of herbivory in the system are important for vegetation development under grazing in arid and semi‐arid rangelands.  相似文献   

6.
ABSTRACT Myoporum platycarpum R. Br. (Myoporaceae) is widely distributed through semi‐arid New South Wales, South Australia, Western Australia and Victoria, where it occurs as an upper‐storey dominant or co‐dominant tree over chenopod shrublands. Previous studies have concluded that the seedlings and juveniles of many shrubs and trees, including M. platycarpum, are selectively grazed by sheep and rabbits, which threatens their long‐term survival in rangelands. The aim of this study was to assess the survivorship of M. platycarpum seedlings grazed by sheep and rabbits in a rangeland setting. Seedlings of M. platycarpum were raised in the greenhouse and planted in the field and individually fenced to allow or prevent access by various herbivores. Over 1 year, the frequency of grazing and size of canopy was recorded. A flexible mixed model incorporating cubic smoothing splines was used to describe the relationship between change in canopy volume over time, fixed effects (exclosure type, time, rainfall and egesta weights) and random variability among plants, replicates and sites. The mixed models showed that there were no significant differences in canopy volume over time between sheep and rabbit‐proof exclosures, indicating that rabbits were not significantly affecting the seedlings, browsing only five of those available to them, of which three survived. Large herbivores (sheep and/or kangaroos) grazed un‐caged seedlings, resulting in significantly smaller canopy volumes, and higher death rates (80%). Although supplementary irrigation was applied, background losses due to desiccation in caged seedlings were up to 50%.  相似文献   

7.
Aim To investigate the application of environmental modelling to reconstructive mapping of pre‐impact vegetation using historical survey records and remnant vegetation data. Location The higher elevation regions of the Fleurieu Peninsula region in South Australia were selected as a case study. The Fleurieu Peninsula is an area typical of many agricultural regions in temperate Australia that have undergone massive environmental transformation since European settlement. Around 9% of the present land cover is remnant vegetation and historical survey records from the ad 1880s exist. It is a region with strong gradients in climate and topography. Methods Records of pre‐impact vegetation distribution made in surveyors’ field notebooks were transcribed into a geographical information system and the spatial and classificatory accuracy of these records was assessed. Maps of remnant vegetation distribution were obtained. Analysis was undertaken to quantify the environmental domains of historical survey record and remnant vegetation data to selected meso‐scaled climatic parameters and topo‐scaled terrain‐related indices at a 20 m resolution. An exploratory analytical procedure was used to quantify the probability of occurrence of vegetation types in environmental domains. Probability models spatially extended to geographical space produce maps of the probability of occurrence of vegetation types. Individual probability maps were combined to produce a pre‐impact vegetation map of the region. Results Surveyors’ field notebook records provide reliable information that is accurately locatable to levels of resolution such that the vegetation data can be spatially correlated with environmental variables generated on 20 m resolution environmental data sets. Historical survey records of vegetation were weakly correlated with the topo‐scaled environmental variables but were correlated with meso‐scaled climate. Remnant vegetation records similarly not only correlated to climate but also displayed stronger relationships with the topo‐scaled environmental variables, particularly slope. Main conclusions A major conclusion of this study is that multiple sources of evidence are required to reconstruct past vegetation patterns in heavily transformed region. Neither the remnant vegetation data nor historical survey records provided adequate data sets on their own to reconstruct the pre‐impact vegetation of the Fleurieu Peninsula. Multiple sources of evidence provide the only means of assessing the environmental and historical representativeness of data sets. The spatial distribution of historical survey records was more environmentally representative than remnant vegetation data, which reflect biases due to land clearance. Historical survey records were also shown to be classificatory and spatially accurate, thus are suitable for quantitative spatial analyses. Analysis of different spatial vegetation data sets in an environmental modelling framework provided a rigorous means of assessing and comparing respective data sets as well as mapping their predicted distributions based on quantitative correlations. The method could be usefully applied to other regions where predictions of pre‐impact vegetation cover are required.  相似文献   

8.
Increased drought combined with extreme episodes of heatwaves is triggering severe impacts on vegetation growth, particularly for plant communities in arid and semiarid ecosystems. Although there is an abundance of short‐term field drought experiments in natural ecosystems, remaining knowledge gaps limit the understanding and prediction of vegetation growth to ongoing and future climate scenarios. Here, we assessed the impacts of long‐term (1999–2016) experimental drought (ca. ?30% rainfall) on the vegetation growth of a Mediterranean high (H) and low (L)‐canopy forests and an early‐successional shrubland, as indicated by above‐ground biomass increment (ABI) and standing density, respectively. We found habitat context (impact of historical climate change, soil depth and successional status) of the study sites significantly affected the magnitude of climate impacts; there were synergistic effects of experimental drought and meteorological drought (Standardised Precipitation–Evapotranspiration Index, SPEI) as well as extreme dry years on vegetation growth. Long‐term experimental drought decreased the ABI for the two forest canopy types and the standing density for the shrubland. Water availabilities in winter–spring (SPEIs) were positively correlated with the ABI and standing density. Moreover, experimental drought decreased the vegetation growth in extreme dry years for the shrubland. We propose that future work not only study the vegetation dynamics with physiological, phenological and demographical changes in long‐term processes and across climate gradients, but also should explore the changes of multiple functions simultaneously (e.g. multifunctionality) under long‐term processes and extremes. This type of analysis of long‐term data is essential to understand and predict biodiversity loss, composition shifts, declines in ecosystem function and carbon budgets at temporal and spatial scales, to enable policy makers to design and implement strategies for the maintenance of sustainable ecosystem function under future climate change scenarios.  相似文献   

9.
Abstract. In the Tunisian arid zone disturbances (e.g. overgrazing and agriculture) and stresses (e.g. aridity, low fertility) drive changes in the structure and functioning of rangelands, with a decrease in perennial plant cover, changes in floristic composition and erosion. Long‐term monitoring requires (1) an understanding of the dynamics of vegetation change and associated ecological processes and (2) identification of relevant indicators. Using data from the arid zone of southern Tunisia we tested the hypothesis that plant functional response types could be used to address these two goals. We identified plant functional response types in response to a gradient of soil and vegetation types characterized by changes in perennial plant cover, dominant species and associated soil types. Vegetation samples were stratified by contrasted vegetation patch types with varying perennial plant cover (1.6 to 22%). We focused our analysis of trait responses within dwarf–shrubs, which are the dominants in typical steppe ecosystems of south Tunisia. Available trait data concerned morphology (plant height, leaf type), regeneration (dispersal mode, phenology and regeneration mode) and grazing value. Although we found it difficult to recognize ‘indicator response types’ that could be used directly to monitor changes in community composition, we were able to identify plant response syndromes that are relevant to long‐term vegetation changes, and in particular degradation processes, in the region. Two main response types were identified: the decreaser type, made up of small or medium chamaephytes with high grazing palatability and the increaser type with medium to tall chamaephytes and low grazing palatability. These response types are proposed as key elements in a state‐and‐transition model of vegetation dynamics in the context of agropastoral disturbances and climatic and edaphic stresses.  相似文献   

10.
Ants are considered an important faunal group for the functioning of arid rangelands, they have a long history of use for environmental monitoring, and exhibit four global patterns in grazing lands: (i) soil and vegetation type are primary determinants of ant community composition, and have a far greater effect on ant community composition than grazing; (ii) grazing induces species compositional change, but does not necessarily affect species richness or abundance; (iii) a species response to grazing is not necessarily consistent across habitats; and (iv) approximately one‐quarter to one‐half of species that are common enough for statistical analysis have significant responses to grazing. Here we report the patterns of arid zone ant faunas as they exist after several decades of sheep grazing in southern Australia, and examine the extent to which they conform to the four global patterns. We measured ant faunas along grazing gradients (varying distance to water) in seven paddocks containing two soil and two vegetation types on five pastoral properties. Total site abundance and richness of ants did not differ significantly with distance from water, but the abundance of 10 (34%) of the 29 most common species did differ; three were increasers, three were decreasers, and four had mixed responses dependent on soil/vegetation type. Rare species showed no trend with grazing intensity. The ant fauna of the more structurally complex vegetation types appeared to be the most vulnerable to grazing effects. Multivariate analysis showed soil type was the primary factor influencing ant faunal composition, followed by vegetation structure; however, grazing treatment effects were present. This study fully supports the recently identified global patterns of ant responses to grazing. It also shows that sampling regional ant faunas using widely dispersed traps can detect ant faunal patterns comparable to studies that use smaller‐scale grids of traps.  相似文献   

11.
The late Neogene climate is characterized both by a general cooling at middle and high latitudes and by short-term temperature oscillations that developed into the ice ages. The effect of these climatic forcings on vegetation is known in only a few cases where the fossil record is sufficiently long, closely sampled and well dated. These records are important in testing models of vegetational change and in demonstrating that present vegetation is a product of past climatic variability on different temporal scales.  相似文献   

12.
1. We investigate long‐term (>200 years) changes to the composition and spatial structure of macrophyte communities in a shallow, eutrophic lake (Barton Broad, eastern England) and consider the implications for lake restoration. 2. Historical macrophyte data were assembled from a variety of sources: existing plant databases, museum herbaria, journal articles, old photographs and eyewitness accounts. Additionally, two types of sediment core sample were analysed for plant macro‐remains and pollen; bulk basal samples from multiple core sites analysed to provide information on ‘pre‐disturbance’ macrophyte communities and two whole cores analysed to determine historical change. 3. Prior to the late 1800s, macrophyte communities were diverse and included a multilayered mosaic of short‐stature submerged taxa and taller submerged and floating‐leaved species. With the progression of eutrophication after around 1900, the former community was displaced by the latter. Diversity was maintained, however, since an encroaching Schoenoplectus–nymphaeid swamp generated extensive patches of low‐energy habitat affording refugia for several macrophytes otherwise unable to withstand the hydraulic forces associated with open water conditions. When this swamp vegetation disappeared in the 1950s, many of the ‘dependent’ aquatic macrophytes also declined leaving behind a sparse, species‐poor community (as today) resilient to both eutrophication and turbulent open waters. 4. The combination of historical and palaeolimnological data sources offers considerable benefits for reconstructing past changes to the aquatic vegetation of lakes and for setting restoration goals. In this respect, our study suggests that successful restoration might often be better judged by reinstatement of the characteristic structure of plant communities than the fine detail of species lists; when nutrients are low and the structure is right, the right species will follow.  相似文献   

13.
Ecosystem stores of carbon are a key component in the global carbon cycle. Many studies have examined the impact of climate change on ecosystem carbon storage, but few have investigated the impact of land-use change and herbivory. However, land-use change is a major aspect of environmental change, and livestock grazing is the most extensive land use globally. In this study, we combine a grazing exclosure experiment and a natural experiment to test the impact of grazer exclusion on vegetation dynamics and ecosystem carbon stores in the short term (12-year exclosures), and the long term (islands inaccessible to livestock), in a heavily grazed mountain region in Norway. Following long-term absence of sheep, birch forest was present. The grazing-resistant grass Nardus stricta, dominated under long-term grazing, whilst the selected grass Deschampsia flexuosa and herb species dominated the vegetation layer in the long-term absence of sheep. The established birch forest led to vegetation carbon stocks being higher on the islands (0.56 kg C m?2 on the islands compared to 0.18 kg C m?2 where grazed) and no difference in soil carbon stocks. In the short-term exclusion of sheep, there were minor differences in carbon stocks reflecting the longer term changes. These results show that aboveground carbon stocks are higher in the long-term absence of sheep than in the continual presence of high sheep densities, associated with a vegetation state change between tundra and forest. The reduction of herbivore populations can facilitate forest establishment and increase aboveground carbon stocks, however, the sequestration rate is low.  相似文献   

14.
Disagreement exists within the scientific community with regards to the level of competition for feed between sheep and kangaroos in the Australian rangelands. The greatest challenge to solving this debate is finding effective means of determining the composition of the diets of these potential grazing competitors. An option is to adopt a non-invasive approach that combines faecal collection and molecular techniques that focus on faecal DNA as the primary source of dietary information. As proof-of-concept, we show that a DNA reference data bank on plant species can be established. This DNA reference data bank was then used as a library to identify plant species in kangaroo faeces collected in the southern rangelands of Western Australia. To enhance the method development and to begin the investigation of competitive grazing between sheep and kangaroos, 16 plant species known to be palatable to sheep were initially targeted for collection. To ensure that only plant sequences were studied, PCR amplification was performed using a universal primer pair previously shown to be specific to the chloroplast transfer RNA leucine (trnL) UAA gene intron. Overall, genus-specific, single and differently sized amplicons were reliably and reproducibly generated; enabling the differentiation of reference plants by PCR product length heterogeneity. However, there were a few plants that could not be clearly differentiated on the basis of size alone. This prompted the adoption of a post-PCR step that enabled further differentiation according to base sequence variation. Restriction endonucleases make sequence-specific cleavages on DNA to produce discrete and reproducible fragments having unique sizes and base compositions. Their availability, affordability and simplicity-of-use put restriction enzyme sequence (RES) profiling as a logical post-PCR step for confirming plant species identity. We demonstrate that PCR-RES profiling of plant and faecal matter is useful for the identification of plants included in the diet of kangaroos. The limitations, potential and the opportunities created for researchers interested in investigating the diet of competing herbivores in the rangelands are discussed.  相似文献   

15.
Abstract. The role of sheep grazing on vegetation change in upland mires removed from livestock farming and surrounded by conifer plantation was investigated with a grazing trial at Butterburn Flow in northern England. Paired grazed and ungrazed plots from central and peripheral locations were compared over 14 yr. Vegetation data from 34 mires in Kielder Forest provided an ordination framework within which vegetation trends were investigated. A gradient from dry moorland/hummock to wet mire/hollow vegetation dominated this framework and may reflect hydrological variability and structural vegetation differences between the mires. Some species were significantly affected by change in grazing intensity and there were differences between the edge and the centre of the mire. Overall vegetation change depended upon the grazing management and the position of the plots such that the removal of sheep grazing decreased the cover of species typical of wet ombrotrophic conditions, but only at the periphery of the mire. The vegetation in one plot became very similar to that of mires elsewhere in Kielder Forest where sheep were removed several decades ago. Cessation of grazing on upland mires is likely to lead to slow structural and species change in vegetation at the mire edge with a long‐term loss of ombrotrophic species. The nature conservation significance of these changes will depend upon whether or not management objectives target natural conditions or wish to maximize ombrotrophic vegetation. The context of external factors such as climate and pollution may, however, be more important in determining site condition on the wettest mires.  相似文献   

16.
1. As long‐term observational lake records continue to lengthen, the historical overlap with lake sediment records grows, providing increasing opportunities for placing the contemporary ecological status of lakes in a temporal perspective. 2. Comparisons between long‐term data sets and sediment records, however, require lake sediments to be accurately dated and for sediment accumulation rates to be sufficiently rapid to allow precise matching with observational data. 3. The critical role of the sediment record in this context is its value in tracking the changing impact of human activity on a lake from a pre‐disturbance reference through to the present day. 4. Here, we use data from a range of lakes across Europe presented as case studies in this Special Section. The seven sites considered all possess both long‐term observational records and high‐quality sediment records. Our objective is to assess whether recent climate change is having an impact on their trophic status and in particular whether that impact can be disentangled from the changes associated with nutrient pollution. 5. The palaeo‐data show clear evidence for the beginning of nutrient pollution varying from the mid‐nineteenth century at Loch Leven to the early and middle twentieth century at other sites. The monitoring data show different degrees of recovery when judged against the palaeo‐reference. 6. The reason for limited recovery is attributed to continuing high nutrient concentrations related to an increase in diffuse nutrient loading or to internal P recycling, but there is some evidence that climate change may be playing a role in offsetting recovery at some sites. If this is the case, then lake ecosystems suffering from eutrophication may not necessarily return to their pre‐eutrophication reference status despite the measures that have been taken to reduce external nutrient loading. 7. The extent to which future warming might further limit such recovery can be evaluated only by continued monitoring combined with the use of palaeo‐records that set the pre‐eutrophication reference.  相似文献   

17.
Aim Observations of long chronosequences in forest ecosystems show that, after some millennia of build‐up, biomass declines in relation to the slow depletion of soil phosphorus. Plants that dominate during this period of soil impoverishment have specialized strategies for P acquisition, including ectomycorrhiza or root clusters. We use quantitative, pollen‐based reconstructions of regional vegetation in four Quaternary warm stages (Holocene, Eemian, Holsteinian, Harreskovian) to test whether inferred forest cover and productivity changes are consistent with long‐term modification of soil nutrient pools. Location Southern Scandinavia (Denmark, southern Sweden). Methods The REVEALS model was used to estimate regional vegetation abundances of 25 pollen‐type‐equivalent taxa from pollen records of large sedimentary basins in southernmost Scandinavia. Based on the estimated regional vegetation, we then calculated time‐series of Ellenberg indicator values for L (light), R (soil reaction) and N (a productivity proxy). We classified the vegetation records into distinct phases and compared these phases and the samples using hierarchical clustering and ordination. Results All three interglacials developed coniferous or mixed forests. However, pure deciduous forests were never reached during the Holsteinian, while pure coniferous forests never developed in the Holocene. Above‐ground productivity was inferred to be low initially, peaking in the first third of the warm stages and then slowly declining (except during the Holocene). Dominant trees of the post‐peak phases all had ectomycorrhiza as a strategy for P acquisition, indicating that easily accessible P pools had become depleted. Increases in fire regimes may have amplified the inferred final drop in productivity. Mid/late Holocene productivity changes were much influenced by agricultural activities. Main conclusions REVEALS vegetation estimates combined with Ellenberg indicator values suggest a consistent pattern in warm stages of initially rising productivity, followed by a long and slow decline. The P‐acquisition strategies of dominant trees indicate that the decline reflects increasing P depletion of soils.  相似文献   

18.
Long‐term ecological data can be an effective tool to help ecologists integrate future projections with historical contexts and provide unique insights into the long‐term dynamics of endangered species. However, hampered by data limitations, including incomplete and spatially biased data, relatively few studies have used multidecadal datasets or have examined changes in biogeography from a historical perspective. The black‐billed capercaillie (Tetrao urogalloides) is a large capercaillie (classified as Least Concern [LC] on the IUCN red list) that has undergone a dramatic decline in population during the late 20th century and is considered endangered. Its conservation status is pessimistic, and the species requires immediate protection. Therefore, we supplemented a historical dataset to identify changes in this bird's range and population in northeast China over the long term. The study area spanned Heilongjiang Province, Jilin Province, and the northeast corner of Inner Mongolia in northeast China. We integrated an ecological niche model (BIOMOD2) with long‐term ecological data on this species to estimate the magnitude of change in distribution over time. Our results revealed a 35.25% reduction in the current distribution of this species compared to their potential distribution in the 1970s. This decline is expected to continue under climate change. For example, the future range loss was estimated to be 38.79 ± 0.22% (8.64–90.19%), and the actual state could be worse, because the baseline range of the model was greater than the real range in the 2000s, showing a 12.39% overestimation. To overcome this poor outlook, a conservation strategy should be established in sensitive areas, including the southwestern Greater Khingan Mountains and northern Lesser Khingan Mountains. Actions that should be considered include field investigations, establishing a monitor network, designing ecological corridors, and cooperating with local inhabitants, governments, and conservation biologists to improve the conservation of the black‐billed capercaillie.  相似文献   

19.
Satellite‐derived indices of photosynthetic activity are the primary data source used to study changes in global vegetation productivity over recent decades. Creating coherent, long‐term records of vegetation activity from legacy satellite data sets requires addressing many factors that introduce uncertainties into vegetation index time series. We compared long‐term changes in vegetation productivity at high northern latitudes (>50°N), estimated as trends in growing season NDVI derived from the most widely used global NDVI data sets. The comparison included the AVHRR‐based GIMMS‐NDVI version G (GIMMSg) series, and its recent successor version 3g (GIMMS3g), as well as the shorter NDVI records generated from the more modern sensors, SeaWiFS, SPOT‐VGT, and MODIS. The data sets from the latter two sensors were provided in a form that reduces the effects of surface reflectance associated with solar and view angles. Our analysis revealed large geographic areas, totaling 40% of the study area, where all data sets indicated similar changes in vegetation productivity over their common temporal record, as well as areas where data sets showed conflicting patterns. The newer, GIMMS3g data set showed statistically significant (α = 0.05) increases in vegetation productivity (greening) in over 15% of the study area, not seen in its predecessor (GIMMSg), whereas the reverse was rare (<3%). The latter has implications for earlier reports on changes in vegetation activity based on GIMMSg, particularly in Eurasia where greening is especially pronounced in the GIMMS3g data. Our findings highlight both critical uncertainties and areas of confidence in the assessment of ecosystem‐response to climate change using satellite‐derived indices of photosynthetic activity. Broader efforts are required to evaluate NDVI time series against field measurements of vegetation growth, primary productivity, recruitment, mortality, and other biological processes in order to better understand ecosystem responses to environmental change over large areas.  相似文献   

20.
Environmental gradients drive variation in community composition across a range of spatial scales. In alpine regions, areas of long‐lasting snow (‘snow patches’) create snowmelt gradients that drive considerable change in vegetation structure and composition over small spatial scales. This study examined whether there is parallel variation in arthropod communities using snowmelt gradients in the Australian Alps. Mites (Acarina) were the most common arthropods in snow patches, followed by springtails while, among the insects, the orders Hymenoptera (primarily Formicidae), Diptera, Coleoptera (primarily Carabidae) and Hemiptera (primarily Cicadellidae) dominated. Along the snowmelt gradient, arthropod assemblages changed from having equal proportions of predators and herbivores in early‐melting zones to being predator‐dominated in late‐melting zones, particularly early in the growing season. This followed a transition in vegetation cover and composition and was driven by higher numbers of predacious carabid beetles in later‐melting zones. Overall, however, our results suggest that snowbed arthropod communities in the Australian alpine zone are more sensitive to short‐term effects, such as time since snowmelt, than to differences in vegetation structure and composition or long‐term patterns of snowmelt. Continued advancement of snowmelt timing due to warmer spring temperatures is therefore likely to have more impact on the seasonality of snowbed arthropod communities than on the overall community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号