首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Despite the impact that human presence has on the area, Andorra in the eastern Pyrenees still harbours a rich butterfly fauna and is a potentially excellent area for studying the effects of global change on biodiversity. The aim of this study was to identify and understand the factors that are inducing observed patterns of butterfly richness in Andorra. We used data collected between 2006 and 2010 from six transects of the Andorran Butterfly Monitoring Scheme that lie at heights from 1,000 to 2,400 m a.s.l. These transects are divided into 44 discrete sections and during the study period 18,603 individuals belonging to 126 butterfly species were recorded. The effects of elevation and habitat composition on species richness and abundance were analyzed, as was the presence of spatial structure in the butterfly assemblages. We found a clear tendency for species richness to decrease as elevation increased and also identified a major faunal turnover. Habitat composition seems to have little effect on species richness and butterfly abundance. A spatial structure was observed in the dataset, with a positive spatial autocorrelation at section scale that reflects a clear effect of altitudinal gradient on species assemblages. Finally, a cluster analysis enabled us to define two main faunistic groups, corresponding to lower (generally in closed habitats) and higher sites (generally in subalpine meadows and grasslands). We thus conclude that the elevation gradient is the principal factor driving butterfly distribution and abundance in Andorra.  相似文献   

2.
Rapid assessment of butterfly diversity in a montane landscape   总被引:2,自引:0,他引:2  
We present the results of a rapid assessment of butterfly diversity in the 754 ha Beaver Meadows study area in Rocky Mountain National Park, Larimer County, Colorado. We measured butterfly species richness and relative abundance as part of a landscape-scale investigation of diversity patterns involving several groups of organisms. A stratified random sampling design was used to include replication in both rare and common vegetation types. We recorded 49 butterfly species from the twenty-four 0.1 ha plots that were sampled four times during June, July, and August 1996. Butterfly species richness, diversity, and uniqueness were highest in quaking aspen (Populus tremuloides Michaux) groves and wet meadows, which occupy only a small proportion of the studied landscape. This result supports the suggestion that aspen areas represent hotspots of biological diversity in this montane landscape. Patterns of butterfly species richness were positively correlated with total vascular plant species richness (r = 0.69; P < 0.001), and native plant species richness (r = 0.64; P < 0.001). However, exotic plant species richness (r = 0.70; P < 0.001) and the cover of exotic plant species (r = 0.70; P < 0.001) were the best predictors of butterfly species richness.  相似文献   

3.
Anthropogenic disturbances and climate change are expected to reorganize biodiversity on multiple ecological levels from populations to ecosystems, especially in arid and semiarid regions due to environmental filtering imposed by water stress. This paper examines the individual and combined effects of chronic anthropogenic disturbance and increased aridity on the structure of fruit-feeding butterfly assemblages in a human-modified landscape of Caatinga dry forest, in the northeast of Brazil. Butterflies were recorded monthly across old-growth forest stands and their assemblages were described in terms of taxonomic and functional community-level attributes confronted to different levels of chronic disturbance and aridity. Butterfly assemblages were species-poor but had high species replacement (turnover) along both the chronic disturbance and aridity gradients. We observed a negative effect of aridity on alpha and beta diversity of butterfly assemblages. Butterfly assemblages across forest stands exposed to high levels of chronic disturbance and aridity had a nested structure. Functional diversity (Rao's Q) and the community-weighted means (CWM) of ocellus-bearing species and monocot-feeding larvae were negatively and positively affected by increased aridity and chronic disturbance, respectively. Our findings suggest that aridity and its combination with chronic disturbance have a drastic effect on the structure of butterfly assemblages in the Caatinga dry forest. These findings highlight that rainfall and chronic disturbances as major drivers of biological reorganization in human-modified landscapes. As aridity increases, Caatinga tends to support taxonomically and functionally impoverished and highly distorted assemblages. Abstract in Portuguese is available with online material  相似文献   

4.
蝴蝶是进行生物多样性监测、评估及生态环境影响评价的重要指示生物.欧洲对蝴蝶的种类组成、种群动态与分布的长期监测已有数十年的历史,先后实施了许多具有国际性影响的长期监测计划.这些计划的目标是评估区域及国家范围的蝴蝶物种丰富度的变化趋势,分析其与栖境和气候变化等环境因素的相关性,为研究、保护和利用蝴蝶资源及预测环境变化提供基础数据,并在蝴蝶受威胁等级的划分、保护措施的制定、生态环境保护与管理等方面发挥了重要作用.本文在总结欧洲蝴蝶监测历史及现状的基础上,着重介绍英国蝴蝶监测计划(The UK Butterfly Monitoring Scheme, UKBMS)、德国及欧盟等重要的蝴蝶监测计划,同时提出了开展我国蝴蝶监测工作的具体建议.  相似文献   

5.
Monitoring programs for diverse tropical butterfly assemblages are scarce, and temporal diversity patterns in these assemblages are poorly understood. We adopted an additive partitioning approach to determine how temporal butterfly species richness was structured at the levels of days, months, and years in five tropical/subtropical sites across three continents covering up to 9 years of monitoring. We found that observed butterfly richness was not uniformly distributed across temporal extents. Butterfly species composition differed across months and years, potentially accounting for the fact that temporal butterfly species richness contributed a high proportion to total species richness. We further examined how species richness of common and uncommon species (> and <0.5% of total abundance, respectively) were structured across temporal extents. The results showed that the common species relative contribution to total species richness was higher at lower‐temporal levels, whereas uncommon species contributed more at higher‐temporal resolutions. This suggests that long‐term sampling will be more effective in capturing patterns of rare species and the total species pool while lower‐temporal level sampling (e.g., daily or weekly) may be more useful in examining common species demographic patterns. We therefore encourage careful consideration of temporal replication at different extents in developing butterfly monitoring schemes. Long‐term monitoring is essential for improvement in the resolution of species estimation and diversity patterns for tropical ecosystems. Abstract in Chinese is available with online material.  相似文献   

6.
The importance of shelter for butterflies in open landscapes   总被引:2,自引:0,他引:2  
In Britain, much emphasis has been placed on conserving butterfly species in specialized habitats, since this is where most of its threatened butterflies exist, whilst the wider countryside has been largely overlooked. However, there is increasing awareness that small improvements to the dominant landscape could potentially reap huge benefits to the populations of many of Britains butterfly species. Recent studies have also stressed the importance of the landscape scale in the conservation of butterflies in small fragmented habitats. In this paper, we examine data from a variety of sources and conclude that the importance of shelter in open landscapes may be underestimated since recording is often restricted to the optimum conditions suggested by the Butterfly Monitoring Scheme. In less favourable conditions, butterflies may place greater reliance on those components of the landscape offering shelter. In light of the current policy of agricultural de-intensification we discuss how modifications to our current landscapes could benefit a wide range of species.  相似文献   

7.
8.
9.
蝴蝶是生态质量和环境变化的重要指示生物。查明福建省龙栖山国家级自然保护区蝴蝶资源及其动态对龙栖山生物多样性保护和研究具有重要意义。通过2016-2018年对龙栖山自然保护区蝴蝶的持续调查和观测, 应用Shannon-Wiener指数及相对多度分析研究了蝴蝶的多样性、种群动态和区系成分。结果表明: 龙栖山自然保护区的蝶类有5科107属193种。在龙栖山样区设置的6条样线中, 小沛样线的属和种数均为最多, 共48属58种; 属于国家保护的蝴蝶有6种; 区系组成主要以东洋种成分(79.3%)为主, 广布种成分次之(21.2%); 蝴蝶优势种组成在不同年度间稍有变化, 持续稳定的优势种为矍眼蝶(Ypthima baldus)。  相似文献   

10.
Few ecosystem restoration studies evaluate whether arthropods are important components of ecosystem recovery. We tested the hypothesis that ponderosa pine restoration treatments would increase adult butterfly species richness and abundance as a direct result of increased understory diversity and abundance. To examine mechanisms that potentially affect adult butterfly distribution, we quantified host plant frequency, nectar plant abundance, and insolation (light intensity) in restoration treatment and control forests. This study is unique, because this is the first invertebrate monitoring in ponderosa pine forest restoration treatments in the U.S. Southwest and also because these treatments are the first replicated ponderosa pine restoration treatments at a landscape scale. Three patterns emerged: (1) butterfly species richness and abundance were 2 and 3 times greater, respectively, in restoration treatment units than in paired control forests 1 year after treatment, and 1.5 and 3.5 times greater, respectively, 2 years after treatment, ordination of control and treatment sampling units using butterfly assemblages showed significant separation of control and restoration treatment units after restoration treatment; (2) host plant and nectar plant species richness showed little difference between treated and control forests even 2 years after treatment; and (3) insolation (light intensity) was significantly greater in treated forests after restoration. We suggest that changes in the butterfly assemblage may occur due to light intensity effects before plant community changes occur or can be detected. Butterfly assemblage differences will have additional cascading effects on the ecosystem as prey for higher trophic levels and through plant interactions including herbivory and pollination.  相似文献   

11.
To examine the effects of human land use and disturbance on butterfly communities we compared the diversity and structure of communities in relatively undisturbed, semi-natural grassland habitats and highly disturbed, human-modified ones. Comparisons were based on transect counts conducted at 6 study sites at the foot of Mt. Fuji in the cool temperate zone of central Japan during 1995. Out of the six community parameters used in the analyses, the species richness, species diversities H and 1/, and dominance indices were significantly different between the two habitat types stated above. That is, butterfly communities in semi-natural habitats had higher species richness and diversity, and lower dominance indices than those in human-modified ones. This suggests that heavy land modification and disturbance to semi-natural habitats change greatly its butterfly community structure, which, indeed, leads to decreasing species richness and diversity mainly due to the loss of species that are confined to semi-natural habitats. Through the comparisons of various species' characteristics, it was found that the species confined to semi-natural habitats had lower population abundance, fewer generations per year, more restricted local distributions, and narrower geographic range size in Japan than the other component species. Based on our results, it is critical that the persistence of the species that are limited to semi-natural habitats be ensured in order to maintain high species richness and diversity in grassland butterfly communities. Thus, conservation plans that retain as much semi-natural habitat as possible within the process of human grassland use, development, and modification are needed.  相似文献   

12.
ABSTRACT. Butterfly assemblages within lowland monsoon forest were compared at four sites on Sumba, Indonesia that differed in terms of protection and exhibited associated differences in levels of human disturbance. A numerical method employing principal components analysis was devised for describing forest structure at each site. The first principal component (PRIN1) grouped attributes tending towards dense forest with closely-spaced trees, a closed canopy and a poorly developed field layer, with trees that tended to be large with the point of inversion in the upper half of the trunk. The highest values for PRIN1 were recorded within protected forest, and PRIN1 values were considered to be a useful index of forest disturbance at each site. Species diversity of butterflies was highest in unprotected secondary forest, but was not affected by lower levels of disturbance. Those species occurring at highest density in secondary forest generally had wide geographical distributions, whereas those species occurring at highest density in undisturbed primary forest had restricted ranges of distribution, in most cases with a separate subspecies on Sumba. Overall, an index of biogeographical distinctiveness decreased with increasing disturbance, and this supports the hypothesis that the most characteristic species of undisturbed climax forest have the smallest geographical ranges of distribution. Species abundance data for butterflies fitted a log-normal distribution at all but the most disturbed site. These results indicate that the pattern of proportional abundance of tropical butterfly species may be used as an ‘instantaneous’ indicator of forest disturbance, and that changes in the structure of tropical forests in S.E. Asia resulting from human disturbance, even within partially-protected forest, may result in the presence of butterfly assemblages of higher species diversity but of lower biogeographical distinctiveness, and therefore of lower value in terms of the conservation of global biodiversity.  相似文献   

13.
Retention of interconnected, remnant grassland linkages is proposed here to reduce the adverse effects of alien pine afforestation in Afromontane grasslands. Adult butterflies were sampled at 38 grassland sites, representing increasing levels of disturbance both within the afforested area and outside it. Butterfly species richness and abundance in the lesser disturbed grassland remnants within the afforested area were similar to those of the surrounding natural grasslands. In contrast, butterfly species richness, but not necessarily abundance, decreased significantly in the highly disturbed sites, both in the grassland linkages and outside. Although some highly disturbed sites were relatively rich in species, most were visited by geographically widespread and vagile species. In contrast, wide, relatively undisturbed grassland linkages, as well as grasslands outside, were important for localised, sedentary and local endemic butterfly species. Nectar plants, especially the alien Verbena bonariensis, were the most significant variable explaining local butterfly distribution. In addition, tall grasses, hills, topographical landmarks, thermoregulatory sites, shelter and water features were also vital for particular species. It did not matter how deep the grassland linkages were situated inside the afforested area, as long as they were made up of good habitat. Retention of wide, quality grassland linkages are a way forward to maximise biodiversity alongside agroforestry.  相似文献   

14.
Butterfly monitoring in Europe: methods,applications and perspectives   总被引:1,自引:0,他引:1  
Since the first Butterfly Monitoring Scheme in the UK started in the mid-1970s, butterfly monitoring in Europe has developed in more than ten European countries. These schemes are aimed to assess regional and national trends in butterfly abundance per species. We discuss strengths and weaknesses of methods used in these schemes and give examples of applications of the data. A new development is to establish supra-national trends per species and multispecies indicators. Such indicators enable to report against the target to halt biodiversity loss by 2010. Our preliminary European Grassland Butterfly Indicator shows a decline of 50% between 1990 and 2005. We expect to develop a Grassland Butterfly Indicator with an improved coverage across European countries. We see also good perspectives to develop a supra-national indicator for climate change as well as an indicator for woodland butterflies.  相似文献   

15.
Polychaete biodiversity has received little attention despite its importance in biomonitoring. This study describes polychaete diversity, and its spatial and temporal variability in infralittoral, hard substrate assemblages. Seven stations were chosen in the central area of the northern Aegean Sea. At each station, one to three depth levels were set (15, 30 and 40 m). Five replicates were collected by scuba diving with a quadrat sampler (400 cm2) from each station and depth level during summer for the spatial analysis, and seasonally for the study of temporal changes. Common biocoenotic methods were employed (estimation of numerical abundance, mean dominance, frequency, Margalefs richness, Shannon-Weaver index and Pielous evenness). A total of 5,494 individuals, belonging to 79 species, were counted and classified. Diversity indices were always high. Clustering and multidimensional scaling techniques indicated a high heterogeneity of the stations, although these were all characterized by the sciaphilic alga community. A clear seasonal pattern was not detectable. Summer and autumn samples discriminate, while winter and spring form an even group. The abundance/biomass comparison indicated a dominance of k-strategy patterns, characteristic of stable communities.Communicated by H.-D. Franke  相似文献   

16.
The objective of this study was to compare butterfly abundances and diversity between wildflower strips and extensively used meadows to identify which butterfly species can be supported by establishing wildflower strips. Butterflies were recorded along transects during one season in twenty-five sown wildflower strips and eleven extensively used meadows in a Swiss lowland agricultural landscape (600 ha). In total 1,669 butterflies of 25 species were observed (25 in the strips, 18 in meadows). This can be related to 38 species recorded in the region (lowland part of Kanton Fribourg) within the Swiss Biodiversity Monitoring Programme. In wildflower strips the number of butterflies per transect meter was significantly higher than in the meadows, but there was no significant difference in species richness. Butterfly communities, though, were quite different between the two habitat types. Habitat type, abundances of flowering plants and presence of forest within 50 m were identified as factors influencing butterfly species richness. Butterfly abundances were affected by habitat type and abundance of flowering plants. In wildflower strips, 65% of all flower visits by butterflies were observed on Origanum. It can be concluded that sown wildflower strips can support a substantial part of a regions species pool. This is mostly true for common species, but can apply to rare species when, for example, larval food plant requirements are met.  相似文献   

17.
Summary Relationships between species distribution and abundance, the influence of proboscis length on species-packing, and species associations within the local assemblages were studied in local communities of bumblebees in northern Spain along an altitudinal gradient. Local species abundance and altitudinal range occupied accounted for much of the variation in species distribution. Altitudinal range occupied by species was related to species distribution, but the most important variable accounting for species distribution was the local percentage abundance. Despite this, there was no evidence for age abundance. Despite this, there was no evidence for bimodality in the distributions of species incidence. A general trends for mean proboscis length in each locality to be greater in lowland localities exists, but this variable was not related to species distribution or abundance. Proboscis length spacings were studied among species in local assemblages and in most of the cases observed spacing did not differ from random expectations. The same patterns were demonstrated calculating spacings for core species in each local assemblage. Furthermore, species showed little tendency towards associations, so it may be concluded that bumblebee assemblages were irregularly structured and no clear patterns emerged from the present study.  相似文献   

18.
Invasive alien species pose one of the highest threats to biodiversity, especially in isolated oceanic islands where high rates of both endemism and extinction risk also usually prevail. Few studies have investigated the impact of invasive alien plants on butterflies in insular ecosystems, despite butterflies representing a key indicator group for terrestrial arthropod diversity. Using the Pollard Technique, we quantified butterfly species richness and abundance in eight wet lowland forest areas invaded by alien plants, principally the strawberry guava (Psidium cattleianum Sabine) on the tropical volcanic island of Mauritius, and compared the results with paired adjacent forest plots that had been weeded of alien plants between 2 and 12 years previously. Butterfly assemblages in weed-infested and weeded forests were distinctly different with higher species richness and much higher butterfly abundance in the latter. At least some of these differences seemed attributable to weed removal effects on forest structure, but understanding the precise mechanisms involved will require further study. The results suggest that alien plant invasion may have contributed to the extinction of certain endemic taxa and can increase the likelihood of butterfly species extinction by reducing population sizes through reduced habitat quality. Such a shift in a forest’s butterfly assemblage is likely to have negative effects on both their indigenous predators and the plants they pollinate. It is argued that in order to maintain butterfly and other arthropod diversity and function in these forests, alien plant control must be maintained and extended beyond the current 1% of surviving forest remnants.  相似文献   

19.
Orthoptera species and assemblages vary enormously in biology, abundance, population variability and geographic range. This means that some are major pests but others are threatened with extinction or are extinct through human agency. Most pest species are in the Acrididae, yet proportionately more threatened species are in the less speciose families. Pest Orthoptera species are unusual on islands, which nevertheless support several threatened non-acridid species. In contrast, continental species of Acrididae and Tettigoniidae are the ones principally threatened. Many of the threatened Orthoptera species are confined to a small geographical area and are highly threatened by anthropogenic impacts that coincide with their small ranges. Yet some formerly widespread pest taxa have become extinct. Genetic polymorphism to a solitary phase appears to be an extinction-avoidance mechanism. While classically threatened point endemics can receive conservation action, not much can be done for the periodically at risk abundant species. Preservation of orthopteran biodiversity is a complex and paradoxical task.  相似文献   

20.
Agricultural landscapes worldwide are under increased pressure to provide food, feed, fiber, and fuel for a growing human population. These demands are leading to changes in agricultural landscapes and subsequent declines in biodiversity. We used citizen science data from the North American Butterfly Association and remotely-sensed land cover data from the US Department of Agriculture to study relationships between agricultural landscape composition and butterfly community structure in the Midwestern US. Landscape-level butterfly species richness (based on rarefaction estimates) was highest in agricultural landscapes with relatively low amounts of cropland, relatively high amounts of woodland, and intermediate amounts of grassland and wetland. Rarefied richness generally declined with the dominance of any of these land cover types. Unlike other land cover types, urban development had a consistent negative effect on rarefied richness. Butterfly community structure (based on relative abundance) was also significantly related to the amount of cropland, woodland, grassland, and wetland in the landscape. The rarest butterfly species were associated with woodland-, grassland-, and wetland-dominated landscapes, likely due to their association with plant species occurring in savannahs, prairies, and marshes, respectively. Assuming that variation across space reflects changes over time, our results support conclusions from previous studies that removal of natural and seminatural habitats alters butterfly community structure and decreases species diversity in agricultural landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号