首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
We have detected a DNAseI hypersensitive site in the ribosomal DNA spacer of Xenopus laevis and Xenopus borealis. The site is present in blood and embryonic nuclei of each species. In interspecies hybrids, however, the site is absent in unexpressed borealis rDNA, but is present normally in expressed laevis rDNA. Hypersensitive sites are located well upstream (over lkb) of the pre-ribosomal RNA promoter. Sequencing of the hypersensitive region in borealis rDNA, however, shows extensive homology with the promoter sequence, and with the hypersensitive region in X. laevis. Of two promoter-like duplications in each spacer, only the most upstream copy is associated with hypersensitivity to DNAaseI. Unlike DNAaseI, Endo R. MspI digests the rDNA of laevis blood nuclei at a domain extending downstream from the hypersensitive site to near the 40S promoter. Since the organisation of conserved sequence elements within this "proximal domain" is similar in three Xenopus species whose spacers have otherwise evolved rapidly, we conclude that this domain plays an important role in rDNA function.  相似文献   

8.
A methylation protection assay was used in a novel manner to demonstrate a specific bovine protein-mitochondrial DNA (mtDNA) interaction within the organelle (in organello). The protected domain, located near the D-loop 3' end, encompasses a conserved termination-associated sequence (TAS) element which is thought to be involved in the regulation of mtDNA synthesis. In vitro footprinting studies using a bovine mitochondrial extract and a series of deleted mtDNA templates identified a approximately 48-kDa protein which binds specifically to a single TAS element also protected within the mitochondrion. Because other TAS-like elements located in close proximity to the protected region did not footprint, protein binding appears to be highly sequence specific. The in organello and in vitro data, together, provide evidence that D-loop formation is likely to be mediated, at least in part, through a trans-acting factor binding to a conserved sequence element located 58 bp upstream of the D-loop 3' end.  相似文献   

9.
Sequences required for 3' end formation of human U2 small nuclear RNA   总被引:38,自引:0,他引:38  
C Y Yuo  M Ares  A M Weiner 《Cell》1985,42(1):193-202
Xenopus oocytes injected with human U2 snRNA genes synthesize mature U2 as well as a U2 precursor with about 10 extra 3' nucleotides (human pre-U2 RNA). Formation of the pre-U2 3' end requires a downstream element located between position +16 and +37 in the U2 3'-flanking sequence. The distance between this element and the U2 coding region can be increased without affecting formation of the pre-U2 3' end. When the natural sequence surrounding the pre-U2 3' end is changed, novel 3' ends are still generated within a narrow range upstream from the element. The 3' terminal stem-loop of U2 snRNA is not required for pre-U2 3' end formation. A sequence within the 3' element (GTTTN0-3AAAPuNNAGA) is conserved among snRNA genes transcribed by RNA polymerase II. Our results suggest that the 3' ends of pre-U2 RNA and histone mRNA may be generated by related but distinct RNA processing mechanisms.  相似文献   

10.
The first processing event of the precursor ribosomal RNA (pre-rRNA) takes place within the 5' external transcribed spacer. This primary processing requires conserved cis-acting RNA sequence downstream from the cleavage site and several nucleic acids (small nucleolar RNAs) and proteins trans-acting factors including nucleolin, a major nucleolar protein. The specific interaction of nucleolin with the pre-rRNA is required for processing in vitro. Xenopus laevis and hamster nucleolin interact with the same pre-rRNA site and stimulate the processing activity of a mouse cell extract. A highly conserved 11-nucleotide sequence located 5-6 nucleotides after the processing site is required for the interaction of nucleolin and processing. In vitro selection experiments with nucleolin have identified an RNA sequence that contains the UCGA motif present in the 11-nucleotide conserved sequence. The interaction of nucleolin with pre-rRNA is required for the formation of an active processing complex. Our findings demonstrate that nucleolin is a key factor for the assembly and maturation of pre-ribosomal ribonucleoparticles.  相似文献   

11.
The sequences of the displacement-loop (D-loop) regions of mitochondrial DNA (mtDNA) from mouse L cells and human KB cells have been determined and provide physical maps to aid in the identification of sequences involved in the regulation of replication and expression of mammalian mtDNA. Both D-loop regions are bounded by the genes for tRNAPhe and tRNAPro. This region contains the most highly divergent sequences in mtDNA with the exceptions of three small conserved sequence blocks near the 5' ends of D-loop strands, a 225 nucleotide conserved sequence block in the center of the D-loop strand template region, and a short sequence associated with the 3' ends of D-loop strands. A sequence similar to that associated with the 3' termini of D-loop strands overlaps one of the conserved sequence blocks near the 5' ends of D-loop strands. The large, central conserved sequence probably does not code for a protein since no open reading frames are discretely conserved. Numerous symmetric sequences and potential secondary structures exist in these sequences, but none appear to be clearly conserved between species.  相似文献   

12.
The spliceosomal small nuclear RNAs U1, U2, U4, and U5 are transcribed by RNA polymerase II as precursors with extensions at their 3' ends. The 3' processing of these pre-snRNAs is not understood in detail. Two pathways of pre-U2 RNA 3' processing in vitro were revealed in the present investigation by using a series of human wild-type and mutant pre-U2 RNAs. Substrates with wild-type 3' ends were initially shortened by three or four nucleotides (which is the first step in vivo), and the correct mature 3' end was then rapidly generated. In contrast, certain mutant pre-U2 RNAs displayed an aberrant 3' processing pathway typified by the persistence of intermediates representing cleavage at each internucleoside bond in the precursor 3' extension. Comparison of the wild-type and mutant pre-U2 RNAs revealed a potential base-pairing interaction between nucleotides in the precursor 3' extension and a sequence located between the Sm domain and stem-loop III of U2 RNA. Substrate processing competition experiments using a highly purified pre-U2 RNA 3' processing activity suggested that only RNAs capable of this base-pairing interaction had high affinity for the pre-U2 RNA 3' processing enzyme. The importance of this postulated base-pairing interaction between the precursor 3' extension and the internal region between the Sm domain and stem-loop III was confirmed by the results obtained with a compensatory substitution that restores the base pairing, which displayed the normal 3' processing reaction. These results implicate a precursor-specific base-paired structure involving sequences on both sides of the mature cleavage site in the 3' processing of human U2 RNA.  相似文献   

13.
14.
Nucleotide sequences of the 5.8 S ribosomal RNAs from HeLa cells, Xenopus laevis and chick embryo fibroblasts were compared. Xenopus laevis 5.8 S RNA differs from that of HeLa cells in four internal positions and at the 3' end of the molecule. Chick 5.8 S RNA differs from that of HeLa cells in two positions. Six out of the seven interspecies differences are due to base substitutions. The other difference is due to the presence of an extra nucleotide, internally located, within the Xenopus 5.8 S sequence.  相似文献   

15.
16.
We have investigated the structure of oocyte and somatic 5S ribosomal RNA and of 5S RNA encoding genes in Xenopus tropicalis. The sequences of the two 5S RNA families differ in four positions, but only one of these substitutions, a C to U transition in position 79 within the internal control region of the corresponding 5S RNA encoding genes, is a distinguishing characteristic of all Xenopus somatic and oocyte 5S RNAs characterized to date, including those from Xenopus laevis and Xenopus borealis. 5S RNA genes in Xenopus tropicalis are organized in clusters of multiple repeats of a 264 base pair unit; the structural and functional organization of the Xenopus tropicalis oocyte 5S gene is similar to the somatic but distinct from the oocyte 5S DNA in Xenopus laevis and Xenopus borealis. A comparative sequence analysis reveals the presence of a strictly conserved pentamer motif AAAGT in the 5'-flanking region of Xenopus 5S genes which we demonstrate in a separate communication to serve as a binding signal for an upstream stimulatory factor.  相似文献   

17.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号