首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The epidermal growth factor (EGF) receptor mediates the induction of a transformed phenotype in normal rat kidney (NRK) cells by transforming growth factors (TGFs). The ability of EGF and its analogue TGF-alpha to induce the transformed phenotype in NRK cells is greatly potentiated by TGF-beta, a polypeptide that does not interact directly with binding sites for EGF or TGF-alpha. Our evidence indicates that TGF-beta purified from retrovirally transformed rat embryo cells and human platelets induces a rapid (t 1/2 = 0.3 h) decrease in the binding of EGF and TGF-alpha to high-affinity cell surface receptors in NRK cells. No change due to TGF-beta was observed in the binding of EGF or TGF-alpha to lower affinity sites also present in NRK cells. The effect of TGF-beta on EGF/TGF-alpha receptors was observed at concentrations (0.5-20 pM) similar to those at which TGF-beta is active in promoting proliferation of NRK cells in monolayer culture and semisolid medium. Affinity labeling of NRK cells and membranes by cross-linking with receptor-bound 125I-TGF-alpha and 125I-EGF indicated that both factors interact with a common 170-kD receptor structure. Treatment of cells with TGF-beta decreased the intensity of affinity-labeling of this receptor structure. These data suggest that the 170 kD high-affinity receptors for EGF and TGF-alpha in NRK cells are a target for rapid modulation by TGF-beta.  相似文献   

2.
Exposure of confluent NRK cells to transforming growth factor-beta (TGF-beta) results in distinct alterations in subpopulations of plasma membrane epidermal growth factor (EGF) receptors. The low affinity sites increase in number, whereas the high affinity sites undergo a transient decrease in affinity followed by a prolonged increase in number. Cycloheximide inhibits both of these effects. Functional assays measuring EGF-stimulated thymidine incorporation in the presence of TGF-beta show that the resulting long-term stimulation of EGF receptor binding is associated with an increased sensitivity to EGF. Similarly, the initial, transient decrease in EGF binding is associated with a temporary inhibition of EGF-stimulated thymidine incorporation. The results describe a bifunctional effect of TGF-beta at the biochemical level consistent with the action of this peptide on NRK cell growth.  相似文献   

3.
Anchorage-independent growth in soft agar of normal rat kidney (NRK) fibroblasts depends on both transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) (or TGF-alpha). We have isolated two EGF-nonresponsive cell lines, N-3 and N-9, from chemically mutagenized NRK cells, after selection of mitogen-specific nonproliferative variants in the presence of EGF and colchicine. Saturation binding kinetics with 125I-EGF showed one-half or fewer EGF receptors in N-3 and N-9 than in their parental NRK. Cellular uptake of 2-deoxy-D-glucose was enhanced in all NRK, N-3, and N-9 cell lines by TGF-beta treatment, whereas treatment with EGF significantly enhanced the cellular uptake of the glucose analog in NRK cells, but not in N-3 and N-9 cells. DNA synthesis of NRK during the quiescent state, but not that of N-3 and N-9, was stimulated by EGF. Anchorage-independent growth of N-9 could not be observed even in the presence of both EGF and TGF-beta, whereas that of N-3 was significantly enhanced by TGF-beta alone. EGF stimulated phosphorylation of a membrane protein with molecular size 170 kDa of NRK, but not of N-3, when immunoprecipitates reacting with anti-phosphotyrosine antibody were analyzed. Exposure of NRK cells to EGF increased cellular levels of TGF-beta mRNA, but there appeared little expression of TGF-beta mRNA in N-3 and N-9 cells. Exposure of N-3 cells to EGF or TGF-beta enhanced the secretion of EGF into culture medium, but exposure of NRK or N-9 cells did not. Altered response to EGF of N-3 or N-9 might be related to their aberrant growth behaviors.  相似文献   

4.
NRK fibroblasts exposed to transforming growth factor-beta (TGF-beta) show increased binding of radiolabeled epidermal growth factor (EGF) relative to untreated cells. The binding of another growth factor, rat insulin-like growth factor-II, is unaffected. The increase in EGF binding induced by TGF-beta is not due to inhibition of EGF processing nor to an alteration in the affinity of plasma membrane EGF receptors. However, treatment of the cells with TGF-beta does cause a rapid increase in the number of plasma membrane receptors for EGF. TGF-beta has little effect on the rate of overall protein synthesis, but the increase it induces in EGF binding can be completely inhibited by cycloheximide and tunicamycin. Thus a selective synthetic mechanism underlies TGF-beta action. Cells incubated with TGF-beta also show altered down regulation of their EGF receptors in response to the ligand; concentrations of EGF that can induce strong biological responses no longer decrease the plasma membrane receptor level below the basal state. These results agree well with the known specificity and synergism of the interaction between TGF-beta and EGF. Moreover, they describe a mechanism of growth control in which bioactive peptides act coordinately through a regulatory effect on the number of cell-surface receptors.  相似文献   

5.
6.
The effects of transforming growth factor beta (TGF-beta) on epidermal growth factor (EGF) receptor content and EGF action were studied in cultured granulosa cells from immature diethylstilbestrol-implanted rats. During follicle-stimulating hormone (FSH)-induced differentiation in vitro, EGF receptors increased by 20-fold as measured by the binding of 125I-EGF to the intact cells. Addition of TGF-beta during the 48-h culture period amplified the stimulatory effects of FSH on EGF receptors up to 2-fold, with ED50 and maximal concentrations of 2.5 and 8 pM, respectively. Also TGF-beta alone in amounts from 1.6 to 16 pM increased EGF receptor content 4-fold. The stimulatory effects of TGF-beta were due to increased numbers of EGF receptors/cell, since the growth factor had no effect on the Kd (3-5 X 10(-11) M) of the high-affinity EGF binding site. TGF-beta action was observed within 20 h of granulosa cell culture and was maximal by 48 h of a 96-h culture. The stimulatory actions of TGF-beta in gonadotropin-induced cells were exerted through the cAMP effector system of the granulosa cell, since the growth factor also amplified the induction of EGF receptors by cholera toxin, forskolin, and 8-bromo-cAMP. The augmentation of EGF receptors by TGF-beta resulted in a parallel 2-fold increase in the inhibitory effects of EGF on FSH-induced cAMP production and luteinizing hormone receptor expression during granulosa cell development. TGF-beta did not increase granulosa cell numbers during culture although it elevated [3H]thymidine incorporation into DNA by 2-fold over that of FSH-treated cells. These results indicate that TGF-beta regulates the effects of both FSH and EGF during granulosa cell differentiation and provides evidence that ovarian function may be controlled by the combined actions of gonadotropins and multiple growth factors.  相似文献   

7.
8.
Long-term biological effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and transforming growth factor-beta (TGF-beta) were examined with human epidermoid carcinoma KB cells. EGF inhibited the growth of KB cells in both serum-containing and serum-free synthetic media by reducing the growth rate and by lowering the saturation density. The cells cultured with EGF showed relatively high motility and grew dispersely as single cells, whereas the cells cultured in the absence of EGF grew in clusters. Although TGF-beta itself did not inhibit the growth of KB cells, it augmented the growth inhibition by EGF. TGF-beta also affected the cell morphology. In the presence of TGF-beta, the cells became flattened and actin stress fibers were well developed compared to those cultured in its absence. The effects of EGF on growth, cell motility, and cell morphology were reversible. Tyrosine phosphorylation of EGF receptors was continuously observed for at least 50 h in the presence of EGF. TGF-beta did not increase the phosphorylation induced by EGF. These results suggested that signals continuously transmitted through EGF receptors caused the changes in cell growth and morphology and that TGF-beta did not act on the cells by modulating binding of EGF to its receptors or activation of the receptor kinase. In contrast to EGF and TGF-beta, neither insulin nor IGF-I affected cell morphology or growth, although KB cells express their receptors and the receptor kinases were also continuously activated during exposure of the cells to insulin or IGF-I.  相似文献   

9.
10.
11.
12.
We have investigated the mechanism of inhibition of the serum-free monolayer growth of normal rat kidney (NRK) cells by transforming growth factor-beta (TGF-beta). NRK cells grown on fibronectin-coated dishes exhibited a biphasic response to TGF-beta. Monolayer growth was slightly stimulated by subpicomolar concentrations, while picomolar concentrations of TGF-beta inhibited NRK cell growth in the presence or absence of epidermal growth factor. NRK cells exhibited a similar biphasic growth response to exogenous type I collagen. TGF-beta induced a 3-5-fold increase in the deposition of type I collagen-like proteins into the extracellular matrix of NRK cells during serum-free growth. Type I collagen-like proteins were identified by their sensitivity to degradation by purified bacterial collagenase and by Western blot analysis. The TGF-beta dose-response curves for induction of extracellular matrix-localized collagen and inhibition of NRK cell growth were similar. Finally, the inclusion of a purified bacterial collagenase, which did not degrade TGF-beta or TGF-beta receptors, or alter control NRK growth, prevented exogenous collagen or TGF-beta from inhibiting the serum-free growth of NRK cells. Our results demonstrate that an increase in collagen secretion plays an important role in the inhibition of the growth of NRK cells by TGF-beta.  相似文献   

13.
14.
Transforming growth factors of the beta-class (TGFs-beta) stimulate extracellular matrix synthesis and have been implicated in embryogenesis, wound healing, and fibroproliferative responses to tissue injury. Because cells communicate with several extracellular matrix components via specific cell membrane receptors, we hypothesized that TGFs-beta may also regulate the expression of such receptors. We confirmed that TGF-beta 1 increases the expression of fibronectin, an adhesive glycoprotein expressed during embryogenesis and tissue remodeling. Based upon the 48-72-h period required for a maximal fibroproliferative response to dermal injections of TGF-beta 1, we exposed human fetal lung fibroblasts (IMR-90) to TGF-beta 1 for periods up to 48 h in vitro. We observed as much as 6-fold increases in fibronectin synthesis by 24 h as previously reported for fibroblastic cells (Ignotz, R. A., and Massagué, J. (1986) J. Biol. Chem. 261, 4337-4345; Ignotz, R. A., Endo, T., and Massagué, J. (1987) J. Biol. Chem. 262, 6443-6446; Raghow, R., Postlethwaithe, A. E., Keski-Oja, J., Moses, H. L., and Kang, A. H. (1987) J. Clin. Invest. 79, 1285-1288), but up to 30-fold increases by 48 h. These increases are accompanied by similar increases in fibronectin mRNA levels which are prevented by actinomycin D treatment. Using a monospecific antibody raised to the human placental fibronectin receptor complex, we found that TGF-beta 1 stimulated fibronectin receptor synthesis up to 20-40-fold and increases mRNA levels encoding both the alpha- and beta-subunits up to 3-fold, compared to control IMR-90 in serum-free medium. Actinomycin D blocks TGF-beta 1-mediated increases in receptor mRNA levels. The earliest detectable TGF-beta 1-mediated increases in fibronectin receptor complex protein synthesis and mRNA levels occur at 8 h, whereas the earliest increases in fibronectin protein synthesis and mRNA levels occur at 12 h. These results demonstrate that TGF-beta 1 stimulates fibronectin receptor synthesis, extending the diverse stimulatory activities of this polypeptide to matrix receptors. In addition, because fibronectin matrix assembly may involve the fibronectin cell adhesive receptor complex, increased receptor expression may help drive fibronectin deposition into matrix.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) induces a marked decrease in adhesion of MG-63 human osteosarcoma cells to laminin-coated surfaces, but does not significantly alter adhesion to fibronectin- or collagen-coated surfaces. We provide evidence that this effect is due to a switch in the repertoire of cell adhesion receptors in response to TGF-beta. MG-63 cells express high levels of alpha 3 beta 1-integrin, which is a polyspecific laminin/collagen/fibronectin receptor, and low levels of alpha 2 beta 1- and alpha 5 beta 1-integrins, which are collagen and fibronectin receptors, respectively. No other integrins of the beta 1-class could be detected in MG-63 cells. Treatment with TGF-beta 1 induces a marked (approximately 60%) decrease in the level of expression of alpha 3-integrin subunit mRNA and protein and a concomitant 8-fold increase in alpha 2-subunit expression. These responses become maximal 7-12 h after addition of TGF-beta 1 to the cells. Expression of alpha 5- and beta 1-integrin subunits also increases in response to TGF-beta 1, but to a lesser extent than alpha 2-subunit expression. Thus, as a result of TGF-beta action, the alpha 2 beta 1-collagen and alpha 5 beta 1-fibronectin receptors replace the alpha 3 beta 1-laminin/collagen/fibronectin receptor as the predominant integrins of the beta 1-class in MG-63 cells. These results suggest that one of the effects of TGF-beta is to modify the adhesive behavior of certain tumor cells by changing the binding specificity of the complement of integrins that they express.  相似文献   

16.
The stimulation of DNA synthesis by epidermal growth factor (EGF) has been studied for a cell line having properties useful for investigating the mechanism of action of EGF in epithelial cell populations. These studies employ a mouse keratinocyte cell line (MK), isolated by Weissman and Aaronson (1983), which is stringently dependent on exogenous EGF for growth in serum containing medium. The studies reported here characterize the compliment of EGR receptors present on the surface of MK cells and demonstrate the regulatory influence of other hormones on the capacity of EGF to stimulate DNA synthesis. Up-regulated MK cells contain approximately 22,000 EGF receptors per cell, but when the cells are grown in the presence of EGF the receptor number is reduced to about 4,000. It is estimated that only a small number of high-affinity receptors (less than 500) are required for EGF-dependent cell proliferation. In contrast to its action in fibroblastic cells, dexamethasone is a strong inhibitor of EGF-stimulated DNA synthesis of MK cells. Insulin at high concentrations, or insulin-like growth factors I or II (IGF-I, IGF-II) at physiological concentrations, synergistically enhance the EGF response. Interestingly, insulin or IGF-I or II are also able to reverse most of the dexamethasone inhibition of DNA synthesis. Transforming growth factor-beta (TGF-beta) inhibits, in reversible manner, the EGF stimulation of DNA synthesis and this inhibition is not overcome by insulin. TGF-beta receptors have been measured in MK cells and Scatchard analysis indicates approximately 20,000 receptors per cell. None of the modulatory hormones (insulin, dexamethasone, TGF-beta) significantly altered 125I-EGF binding characteristics in MK cells, suggesting a point of action distal to 125I-EGF binding.  相似文献   

17.
18.
Normal rat kidney (NRK) fibroblasts are immortalized cells that are strictly dependent on externally added growth factors for proliferation. When cultured in the presence of epidermal growth factor (EGF) as the only growth stimulating hormone, these cells have a normal phenotype and undergo density-dependent growth inhibition. It has been postulated that this density-arrest results from a decrease of EGF receptor levels below a threshold level which makes these cells unresponsive to stimulation by EGF. In the present study, we show that NRK cells, made quiescent by serum-deprivation at submaximum density, are mitogenically still responsive to EGF, but show enhanced mitogenic stimulation after 8 hr pre-treatment with either transforming growth factor β (TGFβ) or retinoic acid (RA), while prostaglandin F (PGF) and bradykinin (BK) enhance the mitogenic stimulation by EGF only slightly under these conditions. Addition of TGFβ or RA results in an increase of both 125I-EGF-binding capacity and EGF receptor mRNA levels. Using flow cytometric analysis, we show that pre-treatment with TGFβ or RA increases the percentage of cells entering the cell cycle as a function of time. Furthermore, pre-treatment of the cells with TGFβ or RA increases the rate of mitogen-activated protein kinase (MAPK) phosphorylation by EGF. PGF and BK also increase EGF receptor levels, but only with delayed kinetics. These results show that already in serum-deprived quiescent NRK cells, EGF receptor levels limit EGF-induced mitogenic stimulation. This observation provides further evidence for the regulating role of the EGF receptor in density-dependent growth control of NRK cells. J. Cell. Physiol. 174:9–17, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
20.
R A Ignotz  J Massagué 《Cell》1987,51(2):189-197
Transforming growth factor-beta (TGF-beta) increases the incorporation of fibronectin and type I collagen into the extracellular matrix of fibroblasts and epithelial cells and enhances the attachment of thymocytes onto a fibronectin substratum. Investigation of the molecular basis for these effects showed that TGF-beta elevates specifically the expression of cell adhesion protein receptors. Treatment of cells with either form of TGF-beta, TGF-beta 1, or TGF-beta 2, increases the rate of receptor synthesis and the level of receptors on the cell surface. TGF-beta acts via two complementary mechanisms, elevation of receptor mRNA and faster kinetics of receptor beta subunit precursor to product conversion. The results show that the expression of cell adhesion receptors is susceptible to pretranslational and posttranslational regulation by factors that control cell morphology, proliferation, and differentiation such as TGF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号