首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
The SSU processome is a large ribonucleoprotein complex consisting of the U3 snoRNA and at least 43 proteins. A database search, initiated in an effort to discover additional SSU processome components, identified the uncharacterized, conserved and essential yeast nucleolar protein YIL091C/UTP25 as one such candidate. The C-terminal DUF1253 motif, a domain of unknown function, displays limited sequence similarity to DEAD-box RNA helicases. In the absence of the conserved DEAD-box sequence, motif Ia is the only clearly identifiable helicase element. Since the yeast homolog is nucleolar and interacts with components of the SSU processome, we examined its role in pre-rRNA processing. Genetic depletion of Utp25 resulted in slowed growth. Northern analysis of pre-rRNA revealed an 18S rRNA maturation defect at sites A0, A1, and A2. Coimmunoprecipitation confirmed association with U3 snoRNA and with Mpp10, and with components of the t-Utp/UtpA, UtpB, and U3 snoRNP subcomplexes. Mutation of the conserved motif Ia residues resulted in no discernable temperature-sensitive or cold-sensitive growth defects, implying that this motif is dispensable for Utp25 function. A yeast two-hybrid screen of Utp25 against other SSU processome components revealed several interacting proteins, including Mpp10, Utp3, and Utp21, thereby identifying the first interactions among the different subcomplexes of the SSU processome. Furthermore, the DUF1253 domain is required and sufficient for the interaction of Utp25 with Utp3. Thus, Utp25 is a novel SSU processome component that, along with Utp3, forms the first identified interactions among the different SSU processome subcomplexes.  相似文献   

2.
The small subunit (SSU) processome is an evolutionarily conserved ribonucleoprotein (RNP) complex that consists of U3 snoRNA and at least 40 protein components. The SSU processome is required for the generation of 18S rRNA in the budding yeast Saccharomyces cerevisiae. In this study we demonstrate that two essential components of the SSU processome, Utp8p and Utp9p, must interact directly for the SSU processome to function properly. Disruption of the Utp8p-Utp9p interaction by mutation of the respective interacting domain led to a compromised ability of yeast cells to process 35S pre-rRNA into 18S pre-rRNA. Loss of the Utp8p-Utp9p interaction also led to a decrease in the amount of Utp8p that interacted with U3 small nucleolar RNAs (snoRNAs) but did not affect the amount of Utp9p bound to U3 snoRNA, suggesting that Utp8p associates with the SSU processome by virtue of its interaction with Utp9p. Together, our data support a model where Utp8p and Utp9p must interact directly and functionally in the U3-containing SSU processome for optimal rRNA biosynthesis to occur in budding yeast.  相似文献   

3.
The small-subunit (SSU) processome is a large ribonucleoprotein required for the biogenesis of the 18S rRNA and likely corresponds to the terminal knobs visualized by electron microscopy on the 5' end of nascent rRNAs. The original purification of the SSU processome of Saccharomyces cerevisiae resulted in the identification of 28 proteins. Here, we characterize 12 additional protein components, including five small-ribosomal-subunit proteins (Rps4, Rps6, Rps7, Rps9, and Rps14) that had previously been copurified. Our multiple criteria for including a component as a bona fide SSU processome component included coimmunoprecipitation with Mpp10 (an SSU processome component), the U3 snoRNA, and the anticipated pre-rRNAs. Importantly, the association of specific ribosomal proteins with the SSU processome suggests that the SSU processome has roles in both pre-rRNA processing and ribosome assembly. These ribosomal proteins may be analogous to the primary or secondary RNA binding proteins first described in bacterial in vitro ribosome assembly maps. In addition to the ribosomal proteins and based on the same experimental approach, we found seven other proteins (Utp18, Noc4, Utp20, Utp21, Utp22, Emg1, and Krr1) to be bona fide SSU processome proteins.  相似文献   

4.
Assembly of the eukaryotic ribosome requires a large number of trans-acting proteins and small nucleolar RNAs that transiently associate with the precursor rRNA to facilitate its modification, processing and binding with ribosomal proteins. UTPB is a large evolutionarily conserved complex in the 90S small subunit processome that mediates early processing of 18S rRNA. UTPB consists of six proteins Utp1/Pwp1, Utp6, Utp12/Dip2, Utp13, Utp18 and Utp21 and has abundant WD domains. Here, we determined the crystal structure of the tandem WD domain of yeast Utp21 at 2.1 Å resolution, revealing two open-clamshell-shaped β-propellers. The bottom faces of both WD domains harbor several conserved patches that potentially function as molecular binding sites. We show that residues 100–190 of Utp18 bind to the tandem WD domain of Utp21. Structural mapping of previous crosslinking data shows that the WD domains of Utp18 and Utp1 are organized on two opposite sides of the Utp21 WD domains. This study reports the first structure of a UTPB component and provides insight into the structural organization of the UTPB complex.  相似文献   

5.
During synthesis of yeast ribosome, a large complex, called the 90S pre-ribosome or the small subunit processome, is assembled on the nascent precursor rRNA and mediates early processing of 18S rRNA. The Utp23 protein and snR30 H/ACA snoRNA are two conserved components of 90S pre-ribosomes. Utp23 contains a degenerate PIN nuclease domain followed by a long C-terminal tail and associates specifically with snR30. Here, we report the crystal structure of the Utp23 PIN domain at 2.5-Å resolution. The structure reveals a conserved core fold of PIN domain with degenerate active site residues, a unique CCHC Zn-finger motif, and two terminal extension elements. Functional sites of Utp23 have been examined with conservation analysis, mutagenesis, and in vivo and in vitro assays. Mutations in each of three cysteine ligands of zinc, although not the histidine ligand, were lethal or strongly inhibitory to yeast growth, indicating that the Zn-finger motif is required for Utp23 structure or function. The N-terminal helix extension harbors many highly conserved basic residues that mostly are critical for growth and in vitro RNA-binding activity of Utp23. Deletion of the C-terminal tail, which contains a short functionally important sequence motif, disrupted the interaction of Utp23 with snR30 and perturbed the pre-ribosomal association of Utp23. Our data establish a structural framework for dissecting Utp23 function in the assembly and dynamics of 90S pre-ribosomes.  相似文献   

6.
Ribosome assembly is an essential and conserved cellular process in eukaryotes that requires numerous assembly factors. The six-subunit UTPB complex is an essential component of the 90S precursor of the small ribosomal subunit. Here, we analyzed the molecular architecture of UTPB using an integrative structural biology approach. We mapped the major interactions that associate each of six UTPB proteins. Crystallographic studies showed that Utp1, Utp21, Utp12 and Utp13 are evolutionarily related and form a dimer of dimers (Utp1–Utp21, Utp12–Utp13) through their homologous helical C-terminal domains. Molecular docking with crosslinking restraints showed that the WD domains of Utp12 and Utp13 are associated, as are the WD domains of Utp1, Utp21 and Utp18. Electron microscopy images of the entire UTPB complex revealed that it predominantly adopts elongated conformations and possesses internal flexibility. We also determined crystal structures of the WD domain of Utp18 and the HAT and deviant HAT domains of Utp6. A structural model of UTPB was derived based on these data.  相似文献   

7.
8.
The 90S pre-ribosome, also known as the small subunit (SSU) processome, is a large multisubunit particle required for the production of the 18S rRNA from a pre-rRNA precursor. Recently, it has been shown that the formation of this particle entails the initial association of the tUTP subunit with the nascent pre-RNA and, subsequently, the binding of Rrp5/UTP-C and U3 snoRNP/UTP-B subunits in two independent assembly branches. However, the mode of assembly of other 90S pre-ribosome components remains obscure as yet. In this study, we have investigated the assembly of three proteins (Utp20, Imp4 and Bms1) previously regarded as potential nucleating factors of the 90S particle. Here, we demonstrate that the loading of those three proteins onto the pre-rRNA takes place independently of Rrp5/UTP-C and, instead, occurs downstream of the tUTP and U3/UTP-B subcomplexes. We also demonstrate that Bms1 and Utp20 are required for the recruitment of a subset of proteins to nascent pre-ribosomes. Finally, we show that proteins associated through secondary steps condition the stability of the two assembly branches in partially assembled pre-ribosomes. These results provide new information about the functional relationships among 90S particle components and the events that are required for their stepwise incorporation onto the primary pre-rRNA.  相似文献   

9.
Utp9p is a nucleolar protein that is part of a subcomplex containing several U3 snoRNA-associated proteins including Utp8p, which is a protein that shuttles aminoacyl-tRNAs from the nucleolus to the nuclear tRNA export receptors Los1p and Msn5p in Saccharomyces cerevisiae. Here we show that Utp9p is also an intranuclear component of the Msn5p-mediated nuclear tRNA export pathway. Depletion of Utp9p caused nuclear accumulation of mature tRNAs derived from intron-containing precursors, but not tRNAs made from intronless pre-tRNAs. Utp9p binds tRNA directly and saturably, and copurifies with Utp8p, Gsp1p, and Msn5p, but not with Los1p or aminoacyl-tRNA synthetases. Utp9p interacts directly with Utp8p, Gsp1p, and Msn5p in vitro. Furthermore, Gsp1p forms a complex with Msn5p and Utp9p in a tRNA-dependent manner. However, Utp9p does not shuttle between the nucleus and the cytoplasm. Because tRNA splicing occurs in the cytoplasm and the spliced tRNAs are retrograded back to the nucleus, we propose that Utp9p facilitates nuclear reexport of retrograded tRNAs. Moreover, the data suggest that Utp9p together with Utp8p translocate aminoacyl-tRNAs from the nucleolus to Msn5p and assist with formation of the Msn5p-tRNA-Gsp1p-GTP export complex.  相似文献   

10.
Yeast snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) that promotes 18S rRNA processing through forming transient base-pairing interactions with the newly synthesized 35S pre-rRNA. By using a novel tandem RNA affinity selection approach, followed by coimmunoprecipitation and in vivo cross-linking experiments, we demonstrate that in addition to the four H/ACA core proteins, Cbf5p, Nhp2p, Nop10p and Gar1p, a fraction of snR30 specifically associates with the Utp23p and Kri1p nucleolar proteins. Depletion of Utp23p and Kri1p has no effect on the accumulation and recruitment of snR30 to the nascent pre-ribosomes. However, in the absence of Utp23p, the majority of snR30 accumulates in large pre-ribosomal particles. The retained snR30 is not base-paired with the 35S pre-rRNA, indicating that its aberrant tethering to nascent preribosomes is likely mediated by pre-ribosomal protein(s). Thus, Utp23p may promote conformational changes of the pre-ribosome, essential for snR30 release. Neither Utp23p nor Kri1p is required for recruitment of snR30 to the nascent pre-ribosome. On the contrary, depletion of snR30 prevents proper incorporation of both Utp23p and Kri1p into the 90S pre-ribosome containing the 35S pre-rRNA, indicating that snR30 plays a central role in the assembly of functionally active small subunit processome.  相似文献   

11.
A multitude of proteins and small nucleolar RNAs transiently associate with eukaryotic ribosomal RNAs to direct their modification and processing and the assembly of ribosomal proteins. Utp22 and Rrp7, two interacting proteins with no recognizable domain, are components of the 90S preribosome or the small subunit processome that conducts early processing of 18S rRNA. Here, we determine the cocrystal structure of Utp22 and Rrp7 complex at 1.97 Å resolution and the NMR structure of a C-terminal fragment of Rrp7, which is not visible in the crystal structure. The structure reveals that Utp22 surprisingly resembles a dimeric class I tRNA CCA-adding enzyme yet with degenerate active sites, raising an interesting evolutionary connection between tRNA and rRNA processing machineries. Rrp7 binds extensively to Utp22 using a deviant RNA recognition motif and an extended linker. Functional sites on the two proteins were identified by structure-based mutagenesis in yeast. We show that Rrp7 contains a flexible RNA-binding C-terminal tail that is essential for association with preribosomes. RNA–protein crosslinking shows that Rrp7 binds at the central domain of 18S rRNA and shares a neighborhood with two processing H/ACA snoRNAs snR30 and snR10. Depletion of snR30 prevents the stable assembly of Rrp7 into preribosomes. Our results provide insight into the evolutionary origin and functional context of Utp22 and Rrp7.  相似文献   

12.
Without ribosome biogenesis, translation of mRNA into protein ceases and cellular growth stops. We asked whether ribosome biogenesis is cell cycle regulated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and we determined that it is not regulated in the same manner as in metazoan cells. We therefore turned our attention to cellular sensors that relay cell size information via ribosome biogenesis. Our results indicate that the small subunit (SSU) processome, a complex consisting of 40 proteins and the U3 small nucleolar RNA necessary for ribosome biogenesis, is not mitotically regulated. Furthermore, Nan1/Utp17, an SSU processome protein, does not provide a link between ribosome biogenesis and cell growth. However, when individual SSU processome proteins are depleted, cells arrest in the G1 phase of the cell cycle. This arrest was further supported by the lack of staining for proteins expressed in post-G1. Similarly, synchronized cells depleted of SSU processome proteins did not enter G2. This suggests that when ribosomes are no longer made, the cells stall in the G1. Therefore, yeast cells must grow to a critical size, which is dependent upon having a sufficient number of ribosomes during the G1 phase of the cell cycle, before cell division can occur.  相似文献   

13.
During ribosomal RNA (rRNA) maturation, cleavages at defined sites separate the mature rRNAs from spacer regions, but the identities of several enzymes required for 18S rRNA release remain unknown. PilT N-terminus (PIN) domain proteins are frequently endonucleases and the PIN domain protein Utp24 is essential for early cleavages at three pre-rRNA sites in yeast (A0, A1 and A2) and humans (A0, 1 and 2a). In yeast, A1 is cleaved prior to A2 and both cleavages require base-pairing by the U3 snoRNA to the central pseudoknot elements of the 18S rRNA. We found that yeast Utp24 UV-crosslinked in vivo to U3 and the pseudoknot, placing Utp24 close to cleavage at site A1. Yeast and human Utp24 proteins exhibited in vitro endonuclease activity on an RNA substrate containing yeast site A2. Moreover, an intact PIN domain in human UTP24 was required for accurate cleavages at sites 1 and 2a in vivo, whereas mutation of another potential site 2a endonuclease, RCL1, did not affect 18S production. We propose that Utp24 cleaves sites A1/1 and A2/2a in yeast and human cells.  相似文献   

14.
Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.  相似文献   

15.
Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.  相似文献   

16.
The SSU processome is a large, evolutionarily conserved ribonucleoprotein (RNP), consisting of the U3 snoRNA and at least 28 protein components, that is required for biogenesis of the 18S rRNA. We tested the function of one protein–protein interaction in the SSU processome, Mpp10p–Imp4p, in ribosome biogenesis. Exploiting the reverse two-hybrid system, we screened for mutated Imp4 proteins that were conditionally defective for interaction with Mpp10p. Three different imp4 sequences were isolated that: (i) conferred conditional growth in the two-hybrid strain; (ii) complemented the disrupted imp4; (iii) conferred conditional growth in the context of their normal cellular function; and (iv) resulted in defective pre-rRNA processing at the non-permissive temperatures. Domain swapping revealed that mutations that conferred cold sensitivity resided in the N-terminal coiled-coil domain while mutations in the C-terminus conferred temperature sensitivity. Surprisingly, the mutated Imp4 proteins were not measurably defective for interaction with Mpp10p in the context of the SSU processome. This suggests that other members of the complex may contribute to maintaining the Mpp10p–Imp4p interaction in this large RNP. Since protein–protein interactions are critical for many different aspects of cellular metabolism, our work has implications for the study of other large protein complexes.  相似文献   

17.
The rate of ribosome biogenesis, which is downregulated in terminally differentiated cells and upregulated in most cancers, regulates the growth rate and is linked to the cell's proliferative potential. The U3 box C/D small nucleolar RNP (snoRNP) is an integral component of the small subunit (SSU) processome and is essential for 18S rRNA processing. We show that U3 snoRNP assembly, and therefore U3 snoRNA accumulation, is regulated through the U3-specific protein hU3-55K. Furthermore, we report that the levels of several SSU processome components, including the U3 snoRNA but not other box C/D snoRNAs, are specifically downregulated during human lung (CaCo-2) and colon (CaLu-3) epithelial cell differentiation. c-Myc is reported to play an integral role in regulating ribosome production by controlling the expression of many ribosome biogenesis factors. Our data, however, indicate that this regulation is not dependent on c-Myc since the level of this protein does not change during epithelial cell differentiation. In addition, depletion of c-Myc had only a mild affect on the levels of SSU processome proteins. CaCo-2 cells are colon adenocarcinoma epithelial cells that are believed to revert to their precancerous state during differentiation. This suggests a significant increase in the levels of specific SSU processome components during tumorogenesis.  相似文献   

18.
19.
Ribosomes are the cellular machines responsible for protein synthesis. Ribosome biogenesis, the production of ribosomes, is a complex process involving pre-ribosomal RNA (rRNA) cleavages and modifications as well as ribosomal protein assembly around the rRNAs to create the functional ribosome. The small subunit (SSU) processome is a large ribonucleoprotein (RNP) in eukaryotes required for the assembly of the SSU of the ribosome as well as for the maturation of the 18S rRNA. Despite the fundamental nature of the SSU processome to the survival of any eukaryotic cell, mutations in SSU processome components have been implicated in human diseases. Three SSU processome components and their related human diseases will be explored in this review: hUTP4/Cirhin, implicated in North American Indian childhood cirrhosis (NAIC); UTP14, implicated in infertility, ovarian cancer, and scleroderma; and EMG1, implicated in Bowen–Conradi syndrome (BCS). Diseases with suggestive, though inconclusive, evidence for the involvement of the SSU processome in their pathogenesis are also discussed, including a novel putative ribosomopathy. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.  相似文献   

20.
A yeast tRNA three-hybrid interaction approach and an in vivo nuclear tRNA export assay based on amber suppression was used to identify proteins that participate in the nuclear tRNA export process in Saccharomyces cerevisiae. One of the proteins identified by this strategy is Utp8p, an essential 80-kDa nucleolar protein that has been implicated in 18 S ribosomal RNA biogenesis. Our characterization indicated that the major function of Utp8p is in nuclear tRNA export. Like the S. cerevisiae Los1p and the mammalian exportin-t, which are proteins known to facilitate nuclear tRNA export, overexpression of Utp8p restored export of tRNAamTyr mutants defective in nuclear export. Furthermore, depletion of Utp8p blocked nuclear export of mature tRNAs derived from both intronless and intron-containing pre-tRNAs but did not affect tRNA and rRNA maturation, nuclear export of mRNA and ribosomes, or nuclear tRNA aminoacylation. Overexpression of Utp8p also alleviated nuclear retention of non-aminoacylated tRNATyr in a tyrosyl-tRNA synthetase mutant strain. Utp8p binds tRNA directly and saturably, indicating that it has a tRNA-binding site. Utp8p does not appear to function as a tRNA export receptor, because it does not shuttle between the nucleus and the cytoplasm. Taken together, the results suggest that Utp8p is an essential intranuclear component of the nuclear tRNA export machinery, which may channel tRNA to the various tRNA export pathways operating in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号