首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The identification of noncoding functional elements within vertebrate genomes, such as those that regulate gene expression, is a major challenge. Comparisons of orthologous sequences from multiple species are effective at detecting highly conserved regions and can reveal potential regulatory sequences. The GDF6 gene controls developmental patterning of skeletal joints and is associated with numerous, distant cis-acting regulatory elements. Using sequence data from 14 vertebrate species, we performed novel multispecies comparative analyses to detect highly conserved sequences flanking GDF6. The complementary tools WebMCS and ExactPlus identified a series of multispecies conserved sequences (MCSs). Of particular interest are MCSs within noncoding regions previously shown to contain GDF6 regulatory elements. A previously reported conserved sequence at -64 kb was also detected by both WebMCS and ExactPlus. Analysis of LacZ-reporter transgenic mice revealed that a 440-bp segment from this region contains an enhancer for Gdf6 expression in developing proximal limb joints. Several other MCSs represent candidate GDF6 regulatory elements; many of these are not conserved in fish or frog, but are strongly conserved in mammals.  相似文献   

2.
Non-coding DNA segments that are conserved between the human and mouse genomic sequence are good indicators of possible regulatory sequences. Here we report on a systematic approach to delineate such conserved elements from upstream regions of orthologous gene pairs from man and mouse. We focus on orthologous genes in order to maximize our chances to find functionally similar regulatory elements. The identification of conserved elements is effected using the Waterman-Eggert local suboptimal alignment algorithm. We have modified an implementation of this algorithm such that it integrates the determination of statistical significance for the local suboptimal alignments. This has the effect of outputting a dynamically determined number of suboptimal alignments that are deemed statistically significant. Comparison with experimentally determined annotation shows a striking enrichement of regulatory sites among the conserved regions. Furthermore, the conserved regions tend to cover the promotor region described in the EPD database.  相似文献   

3.
4.
With the imminent completion of the whole genome sequence of humans, increasing attention is being focused on the annotation of cis-regulatory elements in the human genome. Comparative genomics approaches based on evolutionary conservation have proved useful in the detection of conserved cis-regulatory elements. The pufferfish, Fugu rubripes, is an attractive vertebrate model for comparative genomics, by virtue of its compact genome and maximal phylogenetic distance from mammals. Fugu has lost a large proportion of nonessential DNA, and retained single orthologs for many duplicate genes that arose in the fish lineage. Non-coding sequences conserved between fugu and mammals have been shown to be functional cis-regulatory elements. Thus, fugu is a model fish genome of choice for discovering evolutionarily conserved regulatory elements in the human genome. Such evolutionarily conserved elements are likely to be shared by all vertebrates, and related to regulatory interactions fundamental to all vertebrates. The functions of these conserved vertebrate elements can be rapidly assayed in mammalian cell lines or in transgenic systems such as zebrafish/medaka and Xenopus, followed by validation of crucial elements in transgenic rodents.  相似文献   

5.
6.
7.
8.
We present a computational approach that identifies regulatory elements conserved across phylogenetically distant organisms. Intergenic regulatory regions were clustered by orthology of the adjacent genes, and an iterative process was applied to search for significant motifs, enabling new elements of the putative regulon to be added in each cycle. With this approach, we identified highly conserved riboswitches and the Gram positive T-box. Interestingly, we identified many other regulatory systems that appear to depend on conserved RNA structures.  相似文献   

9.
10.
DNA sequence variations of chalcone synthase (Chs) and Apetala3 gene promoters from 22 cruciferous plant species were analyzed to identify putative conserved regulatory elements. Our comparative approach confirmed the existence of numerous conserved sequences which may act as regulatory elements in both investigated promoters. To confirm the correct identification of a well-conserved UV-light-responsive promoter region, a subset of Chs promoter fragments were tested in Arabidopsis thaliana protoplasts. All promoters displayed similar light responsivenesses, indicating the general functional relevance of the conserved regulatory element. In addition to known regulatory elements, other highly conserved regions were detected which are likely to be of functional importance. Phylogenetic trees based on DNA sequences from both promoters (gene trees) were compared with the hypothesized phylogenetic relationships (species trees) of these taxa. The data derived from both promoter sequences were congruent with the phylogenies obtained from coding regions of other nuclear genes and from chloroplast DNA sequences. This indicates that promoter sequence evolution generally is reflective of species phylogeny. Our study also demonstrates the great value of comparative genomics and phylogenetics as a basis for functional analysis of promoter action and gene regulation.  相似文献   

11.
12.
A systematic approach is described for analysis of evolutionarily conserved cis-regulatory DNA using cis-Decoder, a tool for discovery of conserved sequence elements that are shared between similarly regulated enhancers. Analysis of 2,086 conserved sequence blocks (CSBs), identified from 135 characterized enhancers, reveals most CSBs consist of shorter overlapping/adjacent elements that are either enhancer type-specific or common to enhancers with divergent regulatory behaviors. Our findings suggest that enhancers employ overlapping repertoires of highly conserved core elements.  相似文献   

13.
14.
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA.  相似文献   

15.
We have determined the nucleotide sequence of core histone genes and flanking regions from two of approximately 11 different genomic histone clusters of the nematode Caenorhabditis elegans. Four histone genes from one cluster (H3, H4, H2B, H2A) and two histone genes from another (H4 and H2A) were analyzed. The predicted amino acid sequences of the two H4 and H2A proteins from the two clusters are identical, whereas the nucleotide sequences of the genes have diverged 9% (H2A) and 12% (H4). Flanking sequences, which are mostly not similar, were compared to identify putative regulatory elements. A conserved sequence of 34 base-pairs is present 19 to 42 nucleotides 3' of the termination codon of all the genes. Within the conserved sequence is a 16-base dyad sequence homologous to the one typically found at the 3' end of histone genes from higher eukaryotes. The C. elegans core histone genes are organized as divergently transcribed pairs of H3-H4 and H2A-H2B and contain 5' conserved sequence elements in the shared spacer regions. One of the sequence elements, 5' CTCCNCCTNCCCACCNCANA 3', is located immediately upstream from the canonical TATA homology of each gene. Another sequence element, 5' CTGCGGGGACACATNT 3', is present in the spacer of each heterotypic pair. These two 5' conserved sequences are not present in the promoter region of histone genes from other organisms, where 5' conserved sequences are usually different for each histone class. They are also not found in non-histone genes of C. elegans. These putative regulatory sequences of C. elegans core histone genes are similar to the regulatory elements of both higher and lower eukaryotes. The coding regions of the genes and the 3' regulatory sequences are similar to those of higher eukaryotes, whereas the presence of common 5' sequence elements upstream from genes of different histone classes is similar to histone promoter elements in yeast.  相似文献   

16.
17.
Aligning and comparing genomic sequences enables the identification of conserved sequence signatures and can enrich for coding and noncoding functional regions. In vertebrates, the comparison of human and rodent genomes and the comparison of evolutionarily distant genomes, such as human and pufferfish, have identified specific sets of 'ultraconserved' sequence elements associated with the control of early development. However, is this just the tip of a 'conservation iceberg' or do these sequences represent a specific class of regulatory element? Studies on the zebrafish phox2b gene region and the ENCODE project suggest that many regulatory elements are not highly conserved, posing intriguing questions about the relationship between noncoding sequence conservation and function and the evolution of regulatory sequences.  相似文献   

18.
19.
Using a comparative genomics approach to reconstruct the fate of genomic regulatory blocks (GRBs) and identify exonic remnants that have survived the disappearance of their host genes after whole-genome duplication (WGD) in teleosts, we discover a set of 38 candidate cis-regulatory coding exons (RCEs) with predicted target genes. These elements demonstrate evolutionary separation of overlapping protein-coding and regulatory information after WGD in teleosts. We present evidence that the corresponding mammalian exons are still under both coding and non-coding selection pressure, are more conserved than other protein coding exons in the host gene and several control sets, and share key characteristics with highly conserved non-coding elements in the same regions. Their dual function is corroborated by existing experimental data. Additionally, we show examples of human exon remnants stemming from the vertebrate 2R WGD. Our findings suggest that long-range cis-regulatory inputs for developmental genes are not limited to non-coding regions, but can also overlap the coding sequence of unrelated genes. Thus, exonic regulatory elements in GRBs might be functionally equivalent to those in non-coding regions, calling for a re-evaluation of the sequence space in which to look for long-range regulatory elements and experimentally test their activity.  相似文献   

20.
The gene regulatory circuitry of phage lambda is among the best-understood circuits. Much of the circuitry centres around the immunity region, which includes genes for two repressors, CI and Cro, and their cis-acting sites. Related phages, termed lambdoid phages, have different immunity regions, but similar regulatory circuitry and genome organization to that of lambda, and show a mosaic organization, arising by recombination between lambdoid phages. We sequenced the immunity regions of several wild phages with the immunity specificity of lambda, both to determine whether natural variation exists in regulation, and to analyse conservation and variability in a region rich in well-studied regulatory elements. CI, Cro and their cis-acting sites are almost identical to those in lambda, implying that regulatory mechanisms controlled by the immunity region are conserved. A segment adjacent to one of the operator regions is also conserved, and may be a novel regulatory element. In most isolates, different alleles of two regulatory proteins (N and CII) flank the immunity region; possibly the lysis-lysogeny decision is more variable among isolates. Extensive mosaicism was observed for several elements flanking the immunity region. Very short sequence elements or microhomologies were also identified. Our findings suggest mechanisms by which fine-scale mosaicism arises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号