首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maintenance of meiotic prophase arrest in fully grown vertebrate oocytes depends on an elevated level of cAMP in the oocyte. To investigate how the cAMP level is regulated, we examined whether the activity of an oocyte G protein of the family that stimulates adenylyl cyclase, Gs, is required to maintain meiotic arrest. Microinjection of a dominant negative form of Gs into Xenopus and mouse oocytes, or microinjection of an antibody that inhibits the Gs G protein into zebrafish oocytes, caused meiosis to resume. Together with previous studies, these results support the conclusion that Gs-regulated generation of cAMP by the oocyte is a common mechanism for maintaining meiotic prophase arrest in vertebrate oocytes.  相似文献   

2.
Meiotic cell cycle arrest in mammalian oocytes   总被引:1,自引:0,他引:1  
Meiotic cell cycle in mammalian oocytes is a dynamic process that involves several stop/go channels. The cell cycle arrest in oocyte occurs at various stages such as diplotene, metaphase‐I (M‐I), metaphase‐II (M‐II), and so called metaphase‐like arrest (M‐III). Leutinizing hormone surge induces meiotic resumption from diplotene arrest in follicular microenvironment by overriding several factors responsible for the maintenance of meiotic arrest. The inhibitory factors are synthesized in oocyte or in the associated follicular somatic cells and transferred to the oocyte. The major factors include hypoxanthine, cyclic adenosine 3′, 5′‐monophosphate, cyclic guanosine 3′, 5′‐monophosphate, reactive oxygen species, protein kinase A, and protein kinase C. In the presence of active protein kinases, epidermal‐like growth factors are produced that activate mitogen‐activated protein kinase in cumulus granulosa cells. The maturation promoting factor, cytostatic factors, and spindle assembly checkpoint proteins are also involved in that maintenance of arrest at various stages of meiotic cell cycle in mammalian oocytes. In this review, we briefly summarize the role of these factors in the maintenance of meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223:592–600, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Meiotic arrest and aneuploidy induced by vinblastine in mouse oocytes   总被引:1,自引:0,他引:1  
Young superovulated female mice were injected i.p. with single doses of vinblastine sulfate just before the onset of the first meiotic division. Secondary oocytes, fixed one by one on a slide, were cytogenetically scored. Evidence of the meiotic arresting activity of vinblastine was produced by the observation of increasing frequencies of M1-arrested oocytes and by the presence of undegenerated chromosome sets of first polar bodies. When the first meiotic division could be undertaken chromosome malsegregation occurred with high frequency, both in terms of aneuploidy and polyploidy. M1-blocked and polyploid oocytes have been interpreted as the consequence of irreversible damage to the spindle induced by vinblastine through its binding on tubulin low-affinity sites; this reaction, in fact, causes microtubule crystallization. According to this mechanism, dose-effect relationships of both phenomena show a threshold at 0.45 mg/kg. On the other hand, the incidence of aneuploid oocytes is correlated with meiotic delay, as detected by the delayed degeneration of polar bodies, and increases linearly with dose. Both phenomena are, therefore, stochastic and can be referred to the binding of the chemical on tubulin high-affinity sites, which is known to cause tubulin depolymerization in a colchicine-like way.  相似文献   

4.
Controlling nuclear maturation during oocyte culture might improve nuclear-cytoplasmic maturation synchrony. We aimed to evaluate the quality of in vitro-matured, germinal vesicle (GV)-stage human oocytes following a prematuration culture (PMC) with a meiotic arrester, phosphodiesterase 3-inhibitor (PDE3-I). Follicles (diameter, 6-12 mm) were retrieved 34-36 h post-hCG administration from informed, consenting patients who had undergone controlled ovarian stimulation. Cumulus-enclosed oocytes (CEOs) presenting moderate expansion or full compaction were placed in PMC with the PDE3-I, Org9935, for 24 or 48 h. Subsequently, oocytes were removed from PMC, denuded of cumulus cells, matured in vitro, and fertilized, and the resulting embryos were cultured. In the presence of PDE3-I, approximately 98% of the oocytes were arrested at the GV stage. Following PDE3-I removal, oocytes acquired a higher maturation rate than oocytes that were immediately denuded of cumulus cells after retrieval and in vitro matured (67% vs. 46%, P = 0.01). In controls, immature CEOs retrieved with moderate expansion reached higher maturation rates compared to fully compacted CEOs, but in PMC groups, high values of maturation were achieved for both morphological classes of CEOs. No effect of PMC on fertilization was observed. A 24-h PMC period proved to be the most effective in preserving embryonic integrity. Similar proportions of nuclear abnormalities were observed in embryos of all in vitro groups. In summary, PMC with the specific PDE3-I had a beneficial effect on human CEOs by enhancing maturation, benefiting mainly the fully compacted CEOs. This resulted in an increased yield of mature oocytes available for insemination without compromising embryonic development. These results suggest that applying an inhibitor to control the rate of nuclear maturity by regulating intraoocyte PDE3 activity may allow the synchronization of nuclear and ooplasmic maturation.  相似文献   

5.
To analyze individual steps of G(S)-linked signaling in intact cells, we used fluorescence resonance energy transfer (FRET)-based assays for receptor-G protein interaction, G protein activation, and cAMP effector activation. To do so, we developed a FRET-based sensor to directly monitor G(S) activation in living cells. This was done by coexpressing a Galpha(s) mutant, in which a yellow fluorescent protein was inserted, together with cyan fluorescent protein-tagged Gbetagamma subunits and appropriate receptors in HEK293 cells. Together with assays for receptor activation and receptor-G protein interaction, it is possible to characterize large parts of the G(S) signaling cascade. When A(2A)-adenosine or beta(1)-adrenergic receptors are coexpressed with G(S) in HEK293T cells, the receptor-G(S) interaction was on the same time scale as A(2A) receptor activation with a time constant of <50 ms. G(S) activation was markedly slower and around 450 ms with similar kinetics following activation of A(2A)- or beta(1)-receptors. Taken together, our kinetic measurements demonstrate that the rate of G(S) activation limits initiation of G(S)-coupled receptor signaling.  相似文献   

6.
Metaphase arrest in meiosis I or II before fertilization is a common and unique feature of oogenesis in many animal species. How and why oocytes from many species are arrested at metaphase, rather than after the completion of meiosis, has long remained a mystery. This article reviews recent advances in our understanding of the mechanisms and biological significance of meiotic metaphase arrest in animal oocytes.  相似文献   

7.
We investigated effects of invasive adenylate cyclase (iAC), 3-isobutyl-1-methylxanthine (IBMX) and dibutyryl cyclic AMP (dbcAMP) on porcine oocyte in vitro maturation (IVM), in vitro fertilisation (IVF) and subsequent embryonic development. Porcine oocytes were collected in Hepes-buffered NCSU-37 supplemented with or without 0.1 microg/ml iAC and 0.5 mM IBMX. IVM was performed in a modified NCSU-37 supplemented with or without 1 mM dbcAMP for 22 h and then without dbcAMP for an additional 24 h. After IVF, oocytes were cultured in vitro for 6 days. After 12 h of IVM, no difference in nuclear status was observed irrespective of supplementation with these chemicals during collection and IVM. At 22 h, most (95%) of the oocytes cultured with dbcAMP remained at the germinal vesicle (GV) stage, whereas 44.3% of the oocytes cultured without dbcAMP underwent GV breakdown. At 36 h, oocytes cultured with dbcAMP had progressed to prometaphase I or metaphase I (MI) (32.6% and 49.3%, respectively), whereas non-treated oocytes had progressed further to anaphase I, telophase I or metaphase II (MII) (13.6%, 14.3% and 38.0%, respectively). At 46 h, the rate of matured oocytes at MII was higher in oocytes cultured with dbcAMP (81%) than without dbcAMP (57%), while the proportion of oocytes arrested at MI was lower when cultured with dbcAMP (15%) than without dbcAMP (31%). The rate of monospermic fertilisation was higher when oocytes were cultured with dbcAMP (21%) than without dbcAMP (9%), with no difference in total penetration rates (58% and 52%, respectively). The blastocyst rate was higher in oocytes cultured with dbcAMP (32%) than without dbcAMP (19%). These results suggest that a change in intracellular level of cAMP during oocyte collection does not affect maturational and developmental competence of porcine oocytes and that synchronisation of meiotic maturation using dbcAMP enhances the meiotic potential of oocytes by promoting the MI to MII transition and results in high developmental competence by monospermic fertilisation.  相似文献   

8.
The arrest of meiotic prophase in mouse oocytes within antral follicles requires the G protein G(s) and an orphan member of the G protein-coupled receptor family, GPR3. To determine whether GPR3 activates G(s), the localization of Galpha(s) in follicle-enclosed oocytes from Gpr3(+/+) and Gpr3(-/-) mice was compared by using immunofluorescence and Galpha(s)GFP. GPR3 decreased the ratio of Galpha(s) in the oocyte plasma membrane versus the cytoplasm and also decreased the amount of Galpha(s) in the oocyte. Both of these properties indicate that GPR3 activates G(s). The follicle cells around the oocyte are also necessary to keep the oocyte in prophase, suggesting that they might activate GPR3. However, GPR3-dependent G(s) activity was similar in follicle-enclosed and follicle-free oocytes. Thus, the maintenance of prophase arrest depends on the constitutive activity of GPR3 in the oocyte, and the follicle cell signal acts by a means other than increasing GPR3 activity.  相似文献   

9.
Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential to produce the Bicoid protein gradient that patterns the anterior-posterior axis of the embryo. Previous studies have characterized a microtubule-dependent pathway for bicoid mRNA localization during midoogenesis, when bicoid first accumulates at the anterior. We show that the majority of bicoid is actually localized later in oogenesis, when the only known mechanism for mRNA localization is based on passive trapping. Through live imaging of fluorescently tagged endogenous bicoid mRNA, we identify a temporally distinct pathway for bicoid localization in late oocytes that utilizes a specialized subpopulation of anterior microtubules and dynein. The directional movement of bicoid RNA particles within the oocyte observed here is consistent with dynein-mediated transport. Furthermore, our results indicate that association of bicoid with the anterior oocyte cortex is dynamic and support a model for maintenance of bicoid localization by continual active transport on microtubules.  相似文献   

10.
In the starfish ovary, maturing oocytes stimulated by 1-methyladenine undergo synchronous germinal vesicle breakdown and then arrest in metaphase of the first meiotic division (metaphase I). Immediately after spawning, an increase of intracellular pH (pH(i)) from approximately 7.0 to approximately 7.3 is induced by Na(+)/H(+) antiporter in oocytes, and meiosis reinitiation occurs. Here we show that an endogenous substrate of the proteasome, polyubiquitinated cyclin B, was stable at pH 7.0, whereas it was degraded at pH 7.3. When the MAPK pathway was blocked by MEK inhibitor U0126, degradation of polyubiquitinated cyclin B occurred even at pH 7.0 without an increase of the peptidase activity of the proteasome. These results indicate that the proteasome activity at pH 7.0 is sufficient for degradation of polyubiquitinated cyclin B and that the MAPK pathway blocks the degradation of polyubiquitinated cyclin B in the maturing oocytes in the ovary. Immediately after spawning, the increase in pH(i) mediated by Na(+)/H(+) antiporter cancels the inhibitory effects of the MAPK pathway, resulting in the degradation of polyubiquitinated cyclin B and the release of the arrest. Thus, the key step of metaphase I arrest in starfish oocytes occurs after the polyubiqutination of cyclin B but before cyclin B proteolysis by the proteasome.  相似文献   

11.
Butyrolactone-I (BL-I) and roscovitine (ROSC) are selective inhibitors of the cyclin-dependent kinases, and both have been shown to reversibly inhibit meiotic resumption in cattle oocytes for 24 hr without having a negative affect on subsequent development to the blastocyst stage. The aim of the present study was to describe the morphological changes occurring in fully grown immature and in vitro matured bovine oocytes following exposure to either BL-I or ROSC for 24 hr at concentrations known to be consistent with normal development. Immature bovine cumulus oocyte complexes, recovered from the ovaries of slaughtered heifers, were incubated for 24 hr in the presence of one of the inhibitors. They were then either fixed immediately and processed for transmission electron microscopy (TEM), or cultured for a further 24 hr in the absence of the inhibitor, in conditions permissive to maturation, and subsequently processed for TEM. A control group of oocytes were processed for TEM immediately upon recovery (0 hr) or following in vitro maturation (IVM) for 24 hr. In general, incubation with either inhibitor disrupted the integrity of the surrounding cumulus cells and affected their subsequent expansion during IVM. Within the oocyte cytoplasm, swelling of the mitochondrial cristae was immediately noticeable following meiotic inhibition in the presence of ROSC, while an increased population of pleomorphic mitochondria and mitochondria with electron lucent matrices following BL-I treatment was not observed until after the subsequent IVM period. Both inhibitors caused degeneration of the cortical granules, effectively reducing the population, most noticeably following IVM. At the level of the nucleus, both inhibitory treatments caused convolution of the nuclear membrane, furthermore, aberrant structures were observed within the nucleoplasm of ROSC-treated cumulus oocyte complexes (COCs). In conclusion, while it has been shown that inhibition of meiotic resumption using specific cdk inhibitors is possible and that such oocytes are capable of undergoing maturation, fertilization, and early embryo development, there is as yet no definitive proof that oocytes treated in this way can ultimately give rise to normal offspring. We have shown here that some modifications are induced in the oocytes at the ultrastructural level. Whether or not these modifications are compatible with normal gestation and the birth of a live calf remain to be elucidated.  相似文献   

12.
Wnt pathways are important for the modulation of tissue homeostasis, and their deregulation is linked to cancer development. Canonical Wnt signaling is hyperactivated in many human colorectal cancers due to genetic alterations of the negative Wnt regulator APC. However, the expression levels of Wnt‐dependent targets vary between tumors, and the mechanisms of carcinogenesis concomitant with this Wnt signaling dosage have not been understood. In this study, we integrate whole‐genome CRISPR/Cas9 screens with large‐scale multi‐omic data to delineate functional subtypes of cancer. We engineer APC loss‐of‐function mutations and thereby hyperactivate Wnt signaling in cells with low endogenous Wnt activity and find that the resulting engineered cells have an unfavorable metabolic equilibrium compared with cells which naturally acquired Wnt hyperactivation. We show that the dosage level of oncogenic Wnt hyperactivation impacts the metabolic equilibrium and the mitochondrial phenotype of a given cell type in a context‐dependent manner. These findings illustrate the impact of context‐dependent genetic interactions on cellular phenotypes of a central cancer driver mutation and expand our understanding of quantitative modulation of oncogenic signaling in tumorigenesis.  相似文献   

13.
The influence of trisomy on meiotic chromosome association and synapsis was studied in oocytes of two trisomy 21 fetuses. The patterns of association of the three chromosomes 21 were determined by analysis of late zygotene to early diplotene fetal oocytes after immunofluorescent staining of synaptonemal complexes. The identity of chromosome 21 was confirmed using FISH with either a whole chromosome 21 paint or an alpha-satellite DNA repeat probe. In both fetuses, a wide variety of configurations was present at pachytene. The most common configurations were a trivalent (35.5% and 51.6% of analyzable cells) and a bivalent plus univalent (62.9% and 45.2%). These different frequencies between the fetuses were not significant. Trivalents showed either triple synapsis or double synapsis with pairing-partner switches. The extent of triple synapsis varied from a short segment, either terminal or interstitial, to the whole chromosome length. Through use of immunofluorescent staining of the centromeres, we identified novel types of abnormal chromosome behavior in trisomy 21 fetal oocytes. Thus, we found that 6/41 trivalents had one of the chromosomes associated "out of register," i.e., in a nonhomologous fashion, with its two homologs. Likewise, we found three cells with bivalent plus univalent configurations, in which the univalent showed self-synapsis. The presence of three copies of chromosome 21 therefore results not only in the formation of complex and highly variable synaptic associations but also causes a significant increase in the occurrence of nonhomologous synapsis in human fetal oocytes.  相似文献   

14.
Caspases are thought to be essential in execution of death receptor-induced apoptosis. However, recent findings suggest the existence of alternative pathways independent of caspases. We provide further evidence for such signaling in hepatocytes. RESULTS: Death receptor-induced activation of caspases and apoptosis in primary murine hepatocytes was completely blocked in presence of 1.5 microM N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethylketone (zVAD-fmk). Whereas the same concentration of the inhibitor was sufficient to block TNF receptor 1-, CD95- or TRAIL receptor 1/-2-induced activation of caspases in primary human hepatocytes or HepG2 cells, complete prevention apoptotic cell death needed almost 100 microM zVAD-fmk. Under caspase-inhibitory but non-protective conditions, i.e. at 1.5 microM zVAD-fmk, various serine protease inhibitors prevented apoptosis-like cell death. Neither sole arrest of caspases nor inhibition of serine proteases alone protected human hepatocytes. CONCLUSION: Human but not murine hepatocytes bear the potential to activate a permissive, serine protease inhibitor-sensitive alternative death signaling pathway under caspase-inhibitory conditions.  相似文献   

15.
Most thymocytes that have not successfully rearranged their TCR genes or that express a receptor with subthreshold avidity for self-Ag/MHC enter a default apoptosis pathway, death by neglect. Spontaneous thymocyte apoptosis (STA), at least in part, may mimic this process in vitro. However, the molecular mechanism(s) by which thymocytes undergo this spontaneous apoptosis remains unknown. Here, we report that caspsase-1 and caspase-3 are activated during STA, but these caspases are dispensable for this apoptotic process. The inhibition of STA by a pan-caspase inhibitor, zVAD, suggests that multiple caspase pathways exist. Importantly, the early release of cytochrome c from mitochondria closely correlates with the degradation of Bcl-2 and Bcl-xL and a decrease in the ratios of Bcl-2 and Bcl-xL to Bax during STA. These findings suggest that the degradation of Bcl-2 and Bcl-xL may favor Bax to induce cytochrome c release from mitochondria, which subsequently activates downstream caspases in STA. Our data provide the first biochemical insight into the molecular mechanism of STA.  相似文献   

16.
Stimulation of beta-adrenergic receptor normally results in signaling by the heterotrimeric G protein G(s), leading to the activation of adenylyl cyclase, production of cAMP, and activation of cAMP-dependent protein kinase (PKA). Here we report that cell death of thymocytes can be induced after stimulation of beta-adrenergic receptor, or by addition of exogenous cAMP. Apoptotic cell death in both cases was observed with the appearance of terminal deoxynucleotidyl transferase-mediated UTP end labeling reactivity and the activation of caspase-3 in S49 T cells. Using thymocytes deficient in either Galpha(s) or PKA, we find that engagement of beta-adrenergic receptors initiated a Galpha(s)-dependent, PKA-independent pathway leading to apoptosis. This alternative pathway involves Src family tyrosine kinase Lck. Furthermore, we show that Lck protein kinase activity can be directly stimulated by purified Galpha(s). Our data reveal a new signaling pathway for Galpha(s), distinct from the classical PKA pathway, that accounts for the apoptotic action of beta-adrenergic receptors.  相似文献   

17.
Reinitiation of meiosis in oocytes usually occurs as a two-step process during which release from the prophase block is followed by an arrest in metaphase of the first or second meiotic division [metaphase I (MI) or metaphase II (MII)]. The mechanism of MI arrest in meiosis is poorly understood, although it is a widely observed phenomenon in invertebrates. The blockage of fully grown starfish oocytes in prophase of meiosis I is released by the hormone 1-methyladenine. It has been believed that meiosis of starfish oocytes proceeds completely without MI or MII arrest, even when fertilization does not occur. Here we show that MI arrest of starfish oocytes occurs in the ovary after germinal vesicle breakdown. This arrest is maintained both by the Mos/MEK/MAP kinase pathway and the blockage of an increase of intracellular pH in the ovary before spawning. Immediately after spawning into seawater, activation of Na+/H+ antiporters via a heterotrimeric G protein coupling to a 1-methyladenine receptor in the oocyte leads to an intracellular pH increase that can overcome the MI arrest even in the presence of active MAP kinase.  相似文献   

18.
Meiotic resumption is generally under the control of an extracellular maturation-inducing hormone. It is equivalent to the G2-M phase transition in somatic cell mitosis and is regulated by cyclin B-Cdc2 kinase. However, the complete signaling pathway from the hormone to cyclin B-Cdc2 is yet unclear in any organism. A model system to analyze meiotic resumption is the starfish oocyte, in which Akt/protein kinase B (PKB) plays a key mediator in hormonal signaling that leads to cyclin B-Cdc2 activation. Here we show in starfish oocytes that when PDK1 activity is inhibited by a neutralizing antibody, maturation-inducing hormone fails to induce cyclin B-Cdc2 activation at the meiotic G2-M phase transition, even though PDK2 activity becomes detectable. These observations assign a novel role to PDK1 for a hormonal signaling intermediate toward meiotic resumption. They further support that PDK2 is a molecule distinct from PDK1 and Akt, and that PDK2 activity is not sufficient for the full activation of Akt in the absence of PDK1 activity.  相似文献   

19.
N Furuno  Y Ogawa  J Iwashita  N Nakajo    N Sagata 《The EMBO journal》1997,16(13):3860-3865
In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21Cip in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21Cip can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21Cip are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号