共查询到20条相似文献,搜索用时 8 毫秒
1.
The stoichiometric oxidation of uranous-to uranyl-uranium byThiobacllus ferrooxidans is demonstrated. Fixation of14CO2 and the effect of inhibitors demonstrate that energy is conserved during the oxidation and used for energy-dependent reverse electron flow and carbon dioxide fixation.Abbreviations HOQNO
2-heptyl-4-hydroxyquinoline-N-oxide
- 8-HQ
8-hydroxyquinoline
- TTFA
thenoyltrifluoroacetone 相似文献
2.
Kinetic constants for the oxidation of uranous and ferrous ions byThiobacillus ferrooxidans were estimated. The kinetics indicate a direct biological mechanism for uranium oxidation. The complex interrelations of ferric, uranyl and uranous ion inhibition are considered. 相似文献
3.
Thiobacillus ferrooxidans has been cultivated on synthetic pyrite (FeS2) single crystals as the only energy source and the pyrite interface investigated with respect to characteristic morphological changes using scanning electron microscopy. Corrosion patterns of bacterial size were identified in different stages of development and correlated with bacterial activity. It appears that bacterial attack of the sulfide interface starts by secretion of organic substances around the contact area between the bacterial cell and the sulfide energy source. They might either be part of a pseudo capsule which shields the contact area or may form a sulfur absorbing and transporting organic film. Degradation of the sulfide occurs in the contact area below the bacterial cell leading to a corrosion pit which the bacterium may abandon after it has reached a depth of bacterial dimension. Electron spectroscopic (XPS) and X-ray fluorescence studies indicate a layer of organic substances covering the sulfide surface under bacterial leaching conditions, which is sufficiently thick for consideration in interfacial chemical mechanisms. 相似文献
4.
Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation
Thiobacillus ferrooxidans was cultivated on 100-nm-thick synthetic pyrite (FeS2) films. The steps of biooxidation were studied with high-resolution transmission electron microscopy. The crystallized sulfide was transformed into colloidal sulfur (4–70 nm, depending on the age of the cell and the degree of substrate oxidation; 70nm initially and 4nm after oxidation of the pyrite substrate), which was taken up and distributed over an organic capsule around the bacteria. This colloidal sulfur acted as intermediate energy storage and was transferred by contact to daughter cells not directly attached to the sulfide substrate. 相似文献
5.
Gregory J. Olson Craig K. Sakai E. J. Parks F. E. Brinckman 《Journal of industrial microbiology & biotechnology》1990,6(1):49-52
Summary The bioleaching of cobalt from domestic, industrial smelter wastes was studied.Thiobacillus ferrooxidans solubilized Co from sulfidic dross furnace mattes. At pulp densities of 4% (w/v) up to 600 mg of Co per liter of leaching solution was released from nickel matte, corresponding to removal of about two-thirds of the original amount of Co in the matte. Bioleaching methods may be useful as a component of a process for solubilization and recovery of Co from sulfidic smelter mattes. 相似文献
6.
Masaharu Ishii Tsuyoshi Miyake Tsuyoshi Satoh Hiroshi Sugiyama Yoshinori Oshima Tohru Kodama Yasuo Igarashi 《Archives of microbiology》1996,166(6):368-371
The autotrophic CO2 fixation pathway inAcidianus brierleyi, a facultatively anaerobic thermoacidophilic archaebacterium, was investigated by measuring enzymatic activities from autotrophic, mixotrophic, and heterotrophic cultures. Contrary to the published report that the reductive tricarboxylic acid cycle operates inA. brierleyi, the enzymatic activity of ATP:citrate lyase, the key enzyme of the cycle, was not detected. Instead, activities of acetyl-CoA carboxylase and propionyl-CoA carboxylase, key enzymes of the 3-hydroxypropionate cycle, were detected only whenA. brierleyi was growing autotrophically. We conclude that a modified 3-hydroxypropionate pathway operates inA. brierleyi.Abbreviations
TCA
tricarboxylic acid
-
BV
Benzyl viologen 相似文献
7.
The reputedly obligately organotrophic Thiobacillus ferrooxidans KG-4 cultured on glucose contained a small proportion of cells which grew autotrophically on ferrous-iron. 相似文献
8.
W. Hazeu W. H. Batenburg-van der Vegte P. Bos R. K. van der Pas J. G. Kuenen 《Archives of microbiology》1988,150(6):574-579
The intermediary production of elemental sulfur during the microbial oxidation of reduced sulfur compounds has frequently been reported. Thiobacillus ferrooxidans, an acidophilic chemolithoautotroph, was found to produce an insoluble sulfur compound, primarily elemental sulfur, during the oxidation of thiosulfate, trithionate, tetrathionate and sulfide. This was confirmed by light and electron microscopy. Sulfur was produced from sulfide by an oxidative step, while the production from tetrathionate was initiated by a hydrolytic step, probably followed by a series of chemical reactions. The oxidation of intermediary sulfur was severely inhibited by sulfhydryl-binding reagents such as N-ethylmaleimide, by the addition of uncouplers or after freezing and thawing of the cells, which probably damaged the cell membrane. The mechanisms behind these inhibitions have not yet been clarified. Finally, it was observed that elemental sulfur oxidation by whole cells depended on the medium composition. The absence of sulfate or selenate reduced the sulfur oxidation rate.Non-standard abbreviations NEM
N-ethylmaleimide
- CCCP
carbonyl cyanide m-chlorophenyl hydrazone 相似文献
9.
G. Huerta B. Escobar J. Rubio R. Badilla-Ohlbaum 《World journal of microbiology & biotechnology》1995,11(5):599-600
Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite. 相似文献
10.
Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillus ferrooxidans 总被引:3,自引:0,他引:3
The effects of naturally-occurring organic compounds on ferrous iron oxidation by the bacterium Thiobacillus ferrooxidans were examined with a view to using these compounds to treat or prevent acid mine/rock drainage. The compounds glucose, cellobiose, galacturonic acid, and citric acid were added to the growth medium of five different strains of the bacterium and growth studies were done to determine whether or not strain differences existed with respect to organic compound sensitivity. The effects of these compounds were compared to the effects of sodium dodecyl sulfate (SDS) an anionic detergent. Each of the compounds tested had an inhibitory effect on the strains of the bacterium and sensitivity to these compounds was strain dependent. All strains appeared to be equally susceptible to SDS. Inhibitory concentrations ranged from 70 mM to >280 mM for glucose, 7.5 mM to 150 mM for cellobiose, 20 mM to 230 mM for galacturonic acid, and 50 mM to 130 mM for citric acid. SDS effectively inhibited iron oxidation for all strains at a concentration of 0.3 mM, the lowest concentration tested. Some naturally-occurring organic compounds, therefore, might be candidates for the growth control of T. ferrooxidans. 相似文献
11.
A strain ofThiobacillus ferrooxidans MAL-4-1 was adapted to grow at higher concentrations of copper by repeated subculturing in the presence of increasing levels of added cupric ions in 9K medium. The strains adapted to copper were found to be more efficient in bioleaching of copper from concentrates. When copper tolerant strains were back cultured repeatedly in 9K medium without cupric ions, the initially developed metal tolerance was observed to be lost. This indicates that the copper tolerance developed is stress-dependent and not a permanent trait of the adapted strain. 相似文献
12.
E. Donati G. Curutchet S. Porro P. Tedesco 《World journal of microbiology & biotechnology》1992,8(3):305-308
Bioleaching of metallic sulphides withThiobacillus ferrooxidans in the absence of iron (II) was studied using pure sulphides and mixtures. The direct mode of bacterial action was analysed with respect to sulphide solubility, exposed solid surfaces and bacterial attachment to the solids. Bioleaching of mixed sulphides showed enhancement of metal extraction in comparison with pure sulphides which suggests metal extractions would be better from polymetallic sulphide ores than from similar matrices with only one sulphide. 相似文献
13.
Microbial desulfurization of solubilized coal 总被引:5,自引:0,他引:5
Kitae Baek Chung-Sik Kim Hyun-Ho Lee Hyun-Jae Shin Ji-Won Yang 《Biotechnology letters》2002,24(5):401-405
Microbial desulfurization of low rank coal by Rhodococcus rhodochrous IGTS8 was investigated using three different pretreated coal samples. Solubilized coal was desulfurized more efficiently than hard coal and more sulfur was extracted from biologically solubilized coal than from chemically solubilized coal. Microbial desulfurization combined with biological solubilization removed 75% of the total sufur while the microbial desulfurization combined with chemical solubilization removed 63%. 相似文献
14.
The bacterial-chemical oxidation of natural pyrites with different physical, chemical, and electrophysical characteristics by bacteria Acidithiobacillus ferrooxidans, Sulfobacillus thermotolerans, and the archaeon Ferroplasma acidiphilum were studied. The electrophysical characteristics of three natural pyrites differed in the K thermoEMF value (pyrites 3, 4, hole conduction (p-type conductivity); pyrite 5, mixed type conductivity (n-p)) and in the logarithm of electric resistance. Chemical oxidation of pyrites 3 and 5 resulted in no changes of K thermoEMF. When pyrite 4 was oxidized chemically, the K thermoEMF values remained in the same range as in the initial sample, but the ratio of grains with different K thermoEMF values in the sample was changed: the number of grains with a higher K thermoEMF value increased. The same changes were also observed in the course of bacterio-chemical oxidation of pyrite 4. Of the three pyrites studied, an increase in the logarithm of resistance was observed only for chemical oxidation of pyrite 4 at 28°C. At higher experimental temperatures, the logarithm of resistance increased accordingly; more active bacterial-chemical oxidation resulted in a more pronounced increase in the logarithm of resistance than chemical oxidation. On bacterial-chemical oxidation of pyrites 3 and 5 by A. ferrooxidans and S. thermotolerans strains, iron was leached more actively than sulfur. Preferred bacterial-chemical oxidation of certain fractions from the pyrite samples was shown, namely of the pyrite 3 fraction with higher K thermoEMF values by the F. acidiphilum strain and of a fraction from the pyrite 5 sample with medium K thermoEMF values by the A. ferrooxidans and S. thermotolerans strains. The comparative assessment of bacterial-chemical pyrite oxidation by three types of microorganisms showed the direction of changes in the K thermoEMF values to be the same in the case of bacteria Acidithiobacillus ferrooxidans and Sulfobacillus thermotolerans and different in the case of the archaeon Ferroplasma acidiphilum. 相似文献
15.
Summary Uranyl sulphate (0.2–0.9 mM) inhibited ferrous iron oxidation by growing cultures ofThiobacillus ferrooxidans. The addition of 5–100 mM uranium to the cultures caused immediate cessation of carbon dioxide fixation, rapid loss of viability
and gradual depression of ferrous iron oxidation. Virtually no uranium was found in washed cells grown in the presence of
subtoxic to toxic amounts of uranyl sulphate. Uranium-poisoned organisms appeared plasmolyzed in electron micrographs. Cultures
tolerant to 5 mM UO2
2+ were develoepd by successive subculturing in increased uranium concentrations. The tolerance was maintained during subculturing
in uranium-free medium. Frequency of mutants resistant to 1.0 and 1.5 mM UO2
2+ was 1 per 1.3×106 and 1 per 9.0×108, respectively. The frequency was increased in the presence of 15–150 mM nickel, zinc and manganese. In liquid cultures, bivalent
cations and EDTA alleviated the toxicity of 2 mM uranyl sulphate. 相似文献
16.
【目的】嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)作为湿法冶金的主要功能菌,其在重金属Ni2+胁迫下的亚铁氧化应激机制还不清楚。【方法】在两步法培养体系中,设计由低到高Ni2+胁迫浓度,利用分光光度法、电化学法和实时荧光定量PCR法等从宏观到微观探究Ni2+胁迫下A.ferrooxidans菌亚铁氧化应激效应。【结果】两步培养法体系下A.ferrooxidans菌能够耐受较高浓度的Ni2+毒性(≤30 g/L Ni2+)。当Ni2+胁迫浓度增加至40 g/L时,与对照组(不添加Ni2+胁迫)相比,A.ferrooxidans亚铁氧化率和速率显著降低(24 h的亚铁氧化抑制率约为59.4%),亚铁氧化代谢相关的rus操纵子各功能基因的表达量也显著下调,尤其是基因cyc1(最高下调了16倍)和coxBACD(4个不同亚基最高下调2.7–7.4倍);同时Fe2+氧化相关的胞外电子传递能力也降低,对照组(0 g/L Ni2+,29.0µA)最大还原峰电流值高于实验组(40 g/L Ni2+,24.5µA)。【结论】超高浓度Ni2+胁迫环境对A.ferrooxidans菌有毒性,导致该菌rus操纵子上各功能基因表达量下调,同时造成胞外电子传递速率降低,最终致使A.ferrooxidans菌亚铁氧化能力降低。研究结果将为含Ni固废高效生物浸出提供理论支持。 相似文献
17.
Bruce C. Kelley Olli H. Tuovinen D. J. Donald Nicholas 《Archives of microbiology》1976,109(3):205-208
Differentially labelled 35S-thiosulphate was taken up by washed cells of Thiobacillus ferrooxidans which were previously grown on thiosulphate. The uptake was proportional to the biomass over the range 0.5–4.0 mg dry wt. of bacteria and showed typical saturation kinetics with an estimated K
m
value of 0.5 mM for 35S-thiosulphate. Dithionate and Group VI anions inhibited the uptake, which was under pH control and had a temperature optimum of 50°C. In the absence of thiosulphate, the cells bound 35S-sulphate but the binding did not increase on prolonged incubation and the label could be removed completely by washing with dilute sulphuric acid. Increasing amounts of the label were incorporated from [outer-35S]thiosulphate into cellular materials over a 60-min period, whereas little or no assimilation was observed from either the [inner-35S]thiosulphate or 35S-sulphate. The kinetic properties of the sulphate-activating enzyme ATP_sulphurylase enriched from bacteria grown with either thiosulphate or ferrous-iron were similar although this enzyme has an assimilatory function only when the bacterium is grown with ferrous-iron.Abbreviation APS
adenosine-5-sulphatophosphate 相似文献
18.
Pyritic sulphur was removed from coal by growing Thiobacillus ferrooxidans in a 250 ml batch bioreactor. Thiobacillus ferrooxidansgrown on sulphur and which was added 5 days after initial inoculation, enhanced the iron solubilization rate by 35% as compared to control (without addition of sulphur-grown cells). About 93% pyritic sulphur was removed in presence of sulphur-grown cells as compared to 77% in the control. 相似文献
19.
Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression 总被引:2,自引:0,他引:2
Microbial desulfurization might be developed as a new process for the removal of pyrite sulfur from coal sluries such as coal-water mixture (CWM). An application of iron-oxidizing bacterium Thiobacillus ferrooxidans to flotation would shorten the periods of the microbial removal of pyrite from some weeks by leaching methods to a few minutes. The floatability of pyrite in flotation was mainly reduced by T. ferrooxidans itself rather than by other microbial substances in bacterial culture as additive of flotation liquor. Floatability was suppressed within a few seconds by bacterial contact. The suppression was proportional to increasing the number of cells observed between bacterial adhesion and the suppression of floatability. If 25% of the total pyrite surface area covered with the bacteria, pyrite floatability would be completely depressed. Bacteria that lost their iron-oxidizing activities by sodium cyanide treatment were also able to adhere to pyrite and reduced pyrite floatability as much as normal bacteria did. Thiobacillus ferrooxidans ATCC 23270, T-1, 9, and 11, which had different iron-oxidizing abilities, suppressed floatability to similar-levels. The oxidizing ability of bacteria did not influence the suppressing effect. These results showed the mechanism of the suppression of pyrite floatability by bacteria. Quick bacterial adhesion to pyrite induced floatability suppression by changing the surface property from hydrophobic. The quick adhesion of the bacterium was the novel function which worked to change the surface property of pyrite to remove it from coal. (c) 1993 John Wiley & Sons, Inc. 相似文献
20.
Bacterial oxidation of propane 总被引:6,自引:0,他引:6
Abstract Much recent work in the field of biohydrometallurgy has been directed to the study of bio-oxidation of gold ores by acidophilic iron and sulfur oxidizing microorganisms. This work has been done worldwide and has resulted in several pilot plant and commercial scale operations for gold ore bio-oxidation. Bioleaching of gold by metabolic products of microorganisms has received less attention, but also offers opportunities for industrial application, especially if future regulations restrict the use of cyanide. This paper reviews recent progress in the use of microorganisms tooxidize the sulfidic matrix in refractory gold ores (bio-oxidation) and to solubilize elemental gold (bioleaching). 相似文献