首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dwarf mutation in mice interferes with the development of those anterior pituitary cells responsible for production of thyroid stimulating hormone, growth hormone, and prolactin. Myosin isozyme transitions in both cardiac and skeletal muscle were also found to be affected in this mutant. Electrophoresis of native myosins demonstrated that the fetal (V3) to adult (V1) ventricular cardiac isozyme transition was completely blocked in dwarf mice; in contrast, the neonatal to adult fast myosin transition in hind limb skeletal muscle was slowed but not totally inhibited. The persistence of neonatal myosin heavy chain for up to 55-75 d after birth in dwarf mice, as compared with 16 d in normal mice, was directly demonstrated by polypeptide and immunopolypeptide mapping. Morphological examination of 18-36-d-old dwarf skeletal muscles by optical and electron microscopy revealed a relative immaturity, but no signs of gross pathology were evident. Immunocytochemical analysis showed that the abnormal persistence of neonatal myosin occurs in most of the fibers. Multiple injections of thyroxine restored a normal isozyme complement to both cardiac and skeletal muscles within 11-15 d. Therefore, the effects of the dwarf mutation on myosin isozymes can be explained by the lack of thyroid hormone in these animals. Because the synthesis of growth hormone is not stimulated by thyroid hormone in dwarf mice as it would be in normal animals, these results demonstrate that thyroid hormone promotes myosin isozyme transitions independent of growth hormone production.  相似文献   

2.
Electrophoretic analysis in non-dissociating conditions reveals three types of myosin in adult urodelan amphibian skeletal muscles: 3 isoforms of fast myosin (FM), one isoform of intermediate myosin (IM) and one or two isoforms of slow myosin (SM). Each type is characterized by a specific heavy chain HCf (FM), HCi (IM) and HCs (SM), respectively. In all urodelan species, as in mammals, fast isomyosins associate HCf and the three fast light chains LC1f, LC2f, and LC3f. In most urodelan species the intermediate myosin contains LC1f and LC2f and can be considered as an homodimer of the alkali LC1f. However, in Euproctus asper, IM is characterized by the association of both slow and fast LC with HCi. Slow myosin is a hybrid molecule associating HCs with slow and fast LC. During metamorphosis, a myosin isoenzymic transition occurs consisting in the replacement of three larval myosins (LM) characterized by a specific heavy chain (HCI), by the adult isomyosins with lower electrophoretic mobilities. At the same time there is a change in the ATPase myofibrillar pattern, with the larval fiber types being replaced by adult fibers of types I, IIA and IIB. In the neotenic and perennibranchiate species, which do not undergo spontaneous metamorphosis, sexually mature larval animals present a change in the myosin isoenzymic profile, but no complete transition. The coexistence of larval and adult isomyosins and the persistence of transitional fibers of type IIC in the skeletal muscle are demonstrated. Experimental hypo- and hyperthyroidism indicate that thyroid hormone stimulates the regression of the larval isomyosins, possibly through indirect pathways. In contrast, the appearance and the persistence of the adult isomyosins seem to be independent of thyroid hormone. Thus, the control of the isoenzymic transition in the skeletal muscle of urodelan amphibians appears to imply indirect mechanisms, operating differently on each of the two phases of the complete transition.  相似文献   

3.
A monoclonal antibody, 2B6, has been prepared against the embryonic myosin heavy chain of rat skeletal muscle. On solid phase radioimmunoassay, 2B6 shows specificity to myosin isozymes known to contain the embryonic myosin heavy chain and on immunoblots of denatured contractile proteins and on competitive radioimmunoassay, it reacts only with the myosin heavy chain of embryonic myosin and not with the myosin heavy chain of neonatal or adult fast and slow myosin isozymes or with other contractile or noncontractile proteins. This specificity is maintained with cat, dog, guinea pig, and human myosins, but not with chicken myosins. 2B6 was used to define which isozymes in the developing animal contained the embryonic myosin heavy chain and to characterize the changes in embryonic myosin heavy chain in fast versus slow muscles during development. Finally, 2B6 was used to demonstrate that thyroid hormone hastens the disappearance of embryonic myosin heavy chain during development, while hypothyroidism retards its decrease. This confirmed our previous conclusion that thyroid hormones orchestrate changes in isozymes during development.  相似文献   

4.
The CNBr peptides of [14C]carboxymethylated cardiac myosin heavy chains from euthyroid and thyrotoxic rabbits have been compared using a two-dimensional electrophoretic system. The results indicated that there were extensive differences in the peptide "maps" of these heavy chains, which included differences in the distribution of radiolabeled thiol peptides. Also, the patterns of heavy chain peptides from the cardiac myosins have been compared with those produced by the heavy chain myosin isozymes from skeletal muscles. Peptide maps of heavy chains from red skeletal muscle myosin closely resembled the pattern of peptides found with cardiac myosin heavy chains from euthyroid rabbits. However, peptide maps of heavy chains from white skeletal muscle myosin were dissimilar to those of the cardiac myosin isozymes. We conclude that thyroxine administration stimulates the synthesis of a cardiac myosin isozyme with a heavy chain primary structure which is different from either of the skeletal muscle myosin isozymes.  相似文献   

5.
6.
7.
The relative rates of synthesis and breakdown of myosin heavy and light chains were studied in primary cell cultures of embryonic chick cardiac and skeletal muscle. Measurements were made after 4 days in culture, at which time both skeletal and cardiac cultures were differentiated and contracted spontaneously. Following a 4-hr pulse of radioactive leucine, myosin and its heavy and light chains were extracted to 90% or greater purity and the specific activities of the proteins were determined. In cardiac muscle, myosin heavy chains were synthesized approximately 1.6 times the rate of myosin light chains, and in skeletal muscle, heavy chains were synthesized at approximately 1.4 times the rate of light chains. Relative rates of degradation of muscle proteins were determined using a dual-isotope technique. In general, the soluble and myofibrillar proteins of both types of muscle had decay rates proportional to their molecular weights (larger proteins generally had higher decay rates) based on analyses utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A notable exception to this general rule was myosin heavy chains, which had decay rates only slightly higher than the myosin light chains. Direct measurements on purified proteins indicated that the heavy chains of myosin were turning over at a slightly greater rate (approximately 20%) than the myosin light chains in both cardiac and skeletal muscle. The reasons for the apparent discrepancy between these measurements of myosin heavy and light chain synthesis and degradation are discussed.  相似文献   

8.
During development of fast contracting skeletal muscle in the rat hindleg, embryonic and neonatal forms of the myosin heavy chain are present prior to the accumulation of the adult fast type ( Whalen , R. G., Sell, S. M., Butler-Browne, G.S., Schwartz, K., Bouveret, P., and Pinset -H arstr ?m, I. (1981) Nature (Lond.) 292, 805-809). Polypeptide mapping of the heavy chain subunit using partial proteolysis in the presence of sodium dodecyl sulfate has shown differences in the cleavage patterns for these various heavy chains. Using this technique, we have now examined subfragments, which represent functional domains, from several different myosin isozymes. The heavy chains of the S-1 subfragments containing either light chain 1 or light chain 3 are indistinguishable for the neonatal or fast myosin isozymes. We also isolated the S-1 fragments and the alpha-helical COOH-terminal half of the molecule (rod) from rat embryonic, neonatal, and adult fast and slow myosin, as well as myosin from cardiac ventricles. All of these S-1 and rod fragments were different, indicating that the previously reported differences among these different myosin heavy chain isozymes are located in both the S-1 and rod subfragments for all myosins examined. However, the polypeptide maps of neonatal and adult fast S-1 show clear similarities, as do the maps of slow and cardiac S-1. These similarities in the two pairs of polypeptide maps were confirmed by the results of immunoblotting experiments using antibodies to adult fast and to slow myosin.  相似文献   

9.
It is well established that a rise in circulating thyroid hormone during the second half of chick embryo development significantly influences muscle weight gain and bone growth. We studied thyroid influence on differentiation in slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of embryos rendered hypothyroid by hypophysectomy or administration of an anti-thyroid drug. The expression of native myosins and myosin light chains (MLCs) was studied by electrophoretic analysis, and the myosin heavy chain (MHC) was characterized by immunohistochemistry. The first effects of hypothyroid status were observed at day 21 of embryonic development (stage 46 according to Hamburger and Hamilton). Analysis of myosin isoform expression in PLD muscles of hypothyroid embryos showed persistence of slow migrating native myosins and slow MLCs as well as inhibition of neonatal fast MHC expression, indicating retarded differentiation of this muscle. In ALD muscle, hypothyroidism maintained fast embryonic MHC and induced noticeable amounts of fast MLCs, thus delaying slow muscle differentiation. Our results suggest that thyroid hormones play a role in modulating the appearance of neonatal fast MHC and the disappearance of isomyosins transiently present during embryogenesis. However, T3 supplemental treatment would seem to compensate in part for the effects of hypothyroidism induced by hypophysectomy, suggesting that thyroid hormone might interfere with other factors also accounting for the observed effects.  相似文献   

10.
A full length (25,000 base-pair) myosin heavy chain gene completely contained within a single cosmid clone was isolated from a Syrian hamster cosmid genomic library. Sequence comparison of the 3' untranslated region indicated the presence of a 75% homology with the rat embryonic myosin heavy chain gene. Extensive 5' flanking region regulatory element conservation was also found when the sequence was compared to the rat myosin heavy chain gene. S1 nuclease digestion analysis, however, indicated that the Syrian hamster myosin heavy chain gene exhibited expression in adult Syrian hamster ventricular tissue, as well as the adult vastus medialis, a fast twitch skeletal muscle. Expression also appears to be enhanced in myopathic relative to control hearts. This myosin heavy chain gene is neither the alpha nor beta cardiac myosin heavy chain gene, but is a unique, previously unrecognized, myosin heavy chain gene present in both myocardial and skeletal muscle tissues.  相似文献   

11.
12.
The appearance of the mRNA for the adult fast IIB myosin heavy chain (MHC) was examined during postnatal development of rats using an S1 nuclease assay. In normal rats, a large increase in the adult MHC mRNA began at 6-7 days after birth, whereas daily injections of newborn rats with 3 micrograms of triiodothyronine (T3) resulted in a precocious increase of the mRNA as early as 3 days after birth. Injection of a range of doses of T3 demonstrated that a large effect was obtained between 30 and 300 ng of T3/day/rat. Fast myosin protein was also precociously induced over the same range of T3 doses. This effect was also seen in denervated muscles, and muscles responded similarly to the different doses of T3 whether they were denervated or not. These results suggest that either thyroid hormone or some circulating factors induced by thyroid hormone are limiting factors in controlling the neonatal-to-adult fast MHC transition and that these factors may act directly on muscle tissue.  相似文献   

13.
Three adult skeletal muscle sarcomeric myosin heavy chain (MHC) genes have been identified in the rat, suggesting that the expressed native myosin isoforms can be differentiated, in part, on the basis of their MHC composition. This study was undertaken to ascertain whether the five major native isomyosins [3 fast (Fm1, Fm2, Fm3), 1 slow (Sm), and 1 intermediate (Im)], typically expressed in the spectrum of adult rat skeletal muscles comprising the hindlimb, could be further differentiated on the basis of their MHC profiles in addition to their light chain composition. Results show that in muscles comprised exclusively of fast-twitch glycolytic (FG) fibers and consisting of Fm1, Fm2, and Fm3, such as the tensor fasciae latae, only one MHC, designated as fast type IIb, could be resolved. In soleus muscle, comprised of both slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers and expressing Sm and Im, two MHC bands were resolved and designated as slow/cardiac beta-MHC and fast type IIa MHC. In muscles expressing a mixture of all three fiber types and a full complement of isomyosins, as seen in the plantaris, the MHC could be resolved into three bands. Light chain profiles were characterized for each muscle type, as well as for the purified isomyosins. These data suggest that Im (IIa) consists of a mixture of fast and slow light chains, whereas Fm (IIb) and Sm (beta) isoforms consist solely of fast- and slow-type light chains, respectively. Polypeptide mapping of denatured myosin extracted from muscles expressing contrasting isoform phenotypes suggests differences in the MHC primary structure between slow, intermediate, and fast myosin isotypes. These findings demonstrate that 1) Fm, Im, and Sm isoforms are differentiated on the bases of both their heavy and light chain components and 2) each isomyosin is distributed in a characteristic fashion among rat hindlimb skeletal muscles. Furthermore, these data suggest that the ratio of isomyosins in a given muscle or muscle region is of physiological importance to the function of that muscle during muscular activity.  相似文献   

14.
Contents of myofibrillar proteins in cardiac, skeletal, and smooth muscles   总被引:1,自引:0,他引:1  
The in situ contents of myosin, actin, alpha-actinin, tropomyosin, troponin, desmin were estimated in dog cardiac, rabbit skeletal, and chicken smooth muscles. Whole muscle tissues were dissolved with 8 M guanidine hydrochloride and subjected to two-dimensional gel electrophoresis, which is a nonequilibrium pH gradient electrophoresis (Murakami, U. & Uchida, K. (1984) J. Biochem. 95, 1577-1584) with some modification. The amount of protein in a spot on a slab gel was determined by quantification of the extracted dye. Dye binding capacity of individual myofibrillar proteins was determined by using the purified protein. Myosin contents were 82 +/- 7 pmol/mg wet weight in cardiac muscle, 105 +/- 10 pmol/mg wet weight in skeletal muscle, and 45 +/- 4 pmol/mg wet weight in smooth muscle. Actin contents were 339 +/- 15 pmol/mg wet weight in cardiac muscle, 625 +/- 27 pmol/mg wet weight in skeletal muscle, and 742 +/- 13 pmol/mg wet weight in smooth muscle. The subunit stoichiometry of myosin in the three types of muscles was two heavy chains and four light chains, and there was one light chain 2 for every heavy chain. The molar ratio of actin to tropomyosin was 7/1 in the three types of muscles. Striking differences were seen in the molar ratio of myosin to actin: 1.0/4.1 in cardiac muscle, 1.0/6.0 in skeletal muscle, and 1.0/16.5 in smooth muscle.  相似文献   

15.
Human myosin heavy chains are encoded by a multigene family consisting of at least 10 members. A gene-specific oligonucleotide has been used to isolate the human beta myosin heavy chain gene from a group of twelve nonoverlapping genomic clones. We have shown that this gene (which is expressed in both cardiac and skeletal muscle) is located 3.6kb upstream of the alpha cardiac myosin gene. We find that DNA sequences located upstream of rat and human alpha cardiac myosin heavy chain genes are very homologous over a 300bp region. Analogous regions of two other myosin genes expressed in different muscles (cardiac and skeletal) show no such homology to each other. While a human skeletal muscle myosin heavy chain gene cluster is located on chromosome 17, we show that the beta and alpha human cardiac myosin heavy chain genes are located on chromosome 14.  相似文献   

16.
Numerous studies have explored the energetic properties of skeletal and cardiac muscle fibers. In this mini-review, we specifically explore the interactions between actin and myosin during cross-bridge cycling and provide a conceptual framework for the chemomechanical transduction that drives muscle fiber energetic demands. Because the myosin heavy chain (MHC) is the site of ATP hydrolysis and actin binding, we focus on the mechanical and energetic properties of different MHC isoforms. Based on the conceptual framework that is provided, we discuss possible sites where muscle remodeling may impact the energetic demands of contraction in skeletal and cardiac muscle.  相似文献   

17.
The present paper describes the isolation and linkage mapping of two isoforms of skeletal muscle myosin heavy chain in pig. Two partial cDNAs (pAZMY4 and pAZMY7), coding for the porcine myosin heavy chain-2B and -β respectively, have been isolated from a pig skeletal muscle cDNA library. Four RFLPs were detected with the putative porcine skeletal myosin heavy chain-2B probe (pAZMY4) and one RFLP was identified with the putative myosin heavy chain-β probe (pAZMY7). Two myosin heavy chain loci were mapped by linkage analysis performed with the five RFLPs against the PiGMaP linkage consortium ResPig database: the MYH1 locus, which identifies the fast skeletal muscle myosin heavy chain gene cluster, was located at the end of the map of porcine chromosome 12, while the MYH7 locus, which identifies the myosin heavy chain-α/-β gene cluster, was assigned to the long arm of porcine chromosome 7.  相似文献   

18.
The tissue and developmental distribution of the various myosin subunits has been examined in bovine cardiac muscle. Electrophoretic analysis shows that a myosin light chain found in fetal but not in adult ventricular myosin is very similar and possibly identical to the light chain found in fetal or adult atrial and adult Purkinje fiber myosins. This light chain comigrates on two-dimensional gels with the bovine skeletal muscle embryonic light chain. Thus, this protein appears to be expressed only at early developmental stages in some tissues (cardiac ventricles, skeletal muscle) but at all stages in others (cardiac atria). The heavy chains of these myosins have been examined by one- and two-dimensional polypeptide mapping. The ventricular and Purkinje fiber heavy chains are indistinguishable. They are, however, different from the heavy chain found in cultured skeletal muscle myotubes, in contrast to the situation concerning the embryonic/atrial light chain.  相似文献   

19.
In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions.  相似文献   

20.
Cardiac and skeletal muscle myosins have been treated by N-ethylmaleimide in presence or absence of Mg-ADP. The variations of Ca2+ and K+-ATPase activities and the incorporation of N-[14C]ethylmaleimide into the whole myosin molecule and into its separated subunits (heavy and light chains) have been measured with N-ethylmaleimide treatment for different lengths of time. The results reported here show the following: 1. The Ca2+-ATPase activity of cardiac myosin is activated by N-ethylmaleimide treatment to a lesser extent than that of skeletal myosin. 2. The K+-ATPase activity of both myosins is inhibited in the same quantitative way. 3. The cardiac light chain L1 contains one highly reactive thiol group which is absent from the skeletal light chains. 4. The labelling of three SH-groups localized in the heavy subunits of both myosins induced the same degree of inactivation. 5. The difference observed between the degree of inhibition of the Ca2+-ATPase activity for the two types of myosin with longer treatments appears to be due to differences in the reactivity of the fourth--SH group labelled on the heavy chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号