首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated whether central nitrogen metabolism may influence the triggering of ethanol fermentation in Saccharomyces cerevisiae strain CEN.PK122 grown in the presence of different N-sources (ammonia, glutamate, or glutamine) under conditions in which the carbon to nitrogen (C : N) ratio was varied. An exhaustive quantitative evaluation of yeast physiology and metabolic behavior through metabolic flux analysis (MFA) was undertaken. It is shown that ethanol fermentation is triggered at dilution rates, D (growth rate), significantly lower (D=0.070 and 0.074 h(-1) for glutamate and glutamine, respectively, and D=0.109 h(-1) for ammonia) under N- than C-limitation (approximately 0.18 h(-1) for all N-sources). A characteristic specific rate of glucose influx, q(Glc), for each N-source at Dc, i.e., just before the onset of respirofermentative metabolism, was determined (approximately 2.0, 1.5, and 2.5, for ammonia, glutamate, and glutamine, respectively). This q(Glc) was independent of the nutritional limitation though dependent on the nature of the N-source. The onset of fermentation occurs when this "threshold q(Glc)" is overcome. The saturation of respiratory activity appears not to be associated with the onset of fermentation since q(O(2)) continued to increase after Dc. It was remarkable that under respirofermentative conditions in C-limited chemostat cultures, the glucose consumed was almost completely fermented with biomass being synthesized from glutamate through gluconeogenesis. The results obtained show that the enzyme activities involved in central nitrogen metabolism do not appear to participate in the control of the overflow in carbon catabolism, which is driven toward ethanol production. The role of nitrogen metabolism in the onset of ethanol fermentation would rather be realized through its involvement in setting the anabolic fluxes directed to nitrogenous macromolecules. It seems that nitrogen-related anabolic fluxes would determine when the threshold glucose consumption rate is achieved after which ethanol fermentation is triggered.  相似文献   

2.
Fusarium venenatum A3/5 was grown in iron-restricted batch cultures and iron-limited chemostat cultures to determine how environmental conditions affected siderophore production. The specific growth rate in iron-restricted batch cultures was 0.22 h(-1), which was reduced to 0.12 h(-1) when no iron was added to the culture. D(crit) in iron-limited chemostat culture was 0.1 h(-1). Siderophore production was correlated with specific growth rate, with the highest siderophore production occurring at D=0.08 h(-1) and the lowest at D=0.03 h(-1). Siderophore production was greatest at pH 4.7 and was significantly reduced at pHs above 6.0. Siderophore production could be enhanced by providing insoluble iron instead of soluble iron in continuous flow cultures.  相似文献   

3.
Glucose and lactate metabolic rates were evaluated for cultures of cord blood (CB) mononuclear cell (MNC), peripheral blood (PB) MNC, and PB CD34(+) cell cultures carried out in spinner flasks and in T-flasks in both serum-containing and serum-free media. Specific glucose uptake rates (q(gluc), in micromoles per cell per hour) and lactate generation rates (q(lac)) correlated with the percentage of colony-forming cells (CFC) present in the culture for a broad range of culture conditions. Specifically, the time of maximum CFC percentage in each culture coincided with the time of maximum q(gluc) and q(lac) in cultures with different seeding densities and cytokine combinations. A two-population model (Q(lac) = alpha[CFC] + beta([TC] - [CFC ]), where [TC] is total cell concentration; Q(lac) is volumetric lactate production rate in micromoles per milliliter per hour; alpha is q(lac) for an average CFC; and beta is q(lac) for an average non-CFC) was developed to describe lactate production. The model described lactate production well for cultures carried out in both T-flasks and spinner flasks and inoculated with either PB or CB MNC or PB CD34(+) cells. The values for alpha and beta that were derived from the model varied with both the inoculum density and the cytokine combination. However, preliminary results indicate that cultures carried out under the same conditions from different samples with similar initial CD34(+) cell content have similar values for beta and beta. These findings suggest that it should be possible to use lactate production data to predict the harvest time that corresponds to the maximum number of CFC in culture. The ability to harvest ex vivo hematopoietic cultures for transplantation when CFC are at a maximum has the potential to speed the rate at which immunocompromised patients recover. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 693-700, 1997.  相似文献   

4.
The physiology of Hanseniaspora guilliermondii was studied under aerobic glucose-limited conditions using the accelerostat procedure (continuous acceleration of dilution rate) and classical chemostat cultures. By both cultivation techniques this yeast was found to be Crabtree-positive. Up to a dilution rate of 0.25 h(-1), glucose was completely metabolised into biomass, glycerol and carbon dioxide. Above this value, an increase in the dilution rate was accompanied by the production of other metabolites like ethanol, acetic and malic acids. Biomass yield during the purely oxidative growth was 0.49 g g(-1) and decreased to 0.26 g g(-1) for D=0.34 h(-1). A maximal specific ethanol production rate of 1.36 mmol g(-1) h(-1) and a maximal ethanol yield of 0.05 g g(-1) were achieved at D=0.34 h(-1).  相似文献   

5.
Pseudomonas oleovorans forms medium-chain-length poly(3-hydroxyalkanoate) (PHA) most effectively at growth rates below the maximum specific growth rate. Under adequate conditions, PHA accumulates in inclusion bodies in cells up to levels higher than half of the cell mass, which is a time-consuming process. For PHA production, a two-stage continuous cultivation system with two fermentors connected in series is a potentially useful system. It offers production of cells at a specific growth rate in a first compartment at conditions that lead cells to generate PHA at higher rates in a second compartment, with a relatively long residence time. In such a system, dilution rates of 0.21 h(-1) in the first fermentor (D(1)) and 0.16 h(-1) in the second fermentor (D(2)) were found to yield the highest volumetric PHA productivity. Transient-state experiments allowed investigation of D(1) and D(2) over a wide dilution rate range at high resolution in time-saving experiments. Furthermore, the influence of temperature, pH, nutrient limitation, and carbon source on PHA productivity was investigated and results similar to optimum conditions in single-stage chemostat cultivations of P. oleovorans were found. With all culture parameters optimized, a volumetric PHA productivity of 1.06 g L(-1) h(-1) was determined. Under these conditions, P. oleovorans cells contained 63% (dry weight) PHA in the effluent of the second fermentor. This is the highest PHA productivity and PHA content reported thus far for P. oleovorans cultures grown on alkanes.  相似文献   

6.
Continuous cultures, under cellobiose sufficient concentrations (14. 62 mM) using a chemically defined medium, were examined to determine the carbon regulation selected by Clostridium cellulolyticum. Using a synthetic medium, a q(cellobiose) of 2.57 mmol g cells(-1) h(-1) was attained whereas the highest value obtained on complex media was 0.68 mmol g cells(-1) h(-1) (Payot et al. 1998. Microbiology 144:375-384). On a synthetic medium at D = 0.035 h(-1) under cellobiose excess, lactate and ethanol biosynthesis were able to use the reducing equivalents supplied by acetic acid formation and the H(2)/CO(2) ratio was found equal to 1. At a higher dilution rate (D = 0.115 h(-1)), there was no lactate production and the pathways toward ethanol and NADH-ferredoxin-hydrogenase contributed to balance the reducing equivalents; in this case a H(2)/CO(2) ratio of 1.54 was found. With increasing D, there was a progressive increase (i) in the steady-state concentration of NADH and NAD(+) pools from 11.8 to 22.1 micromol (g cells) (-1), (ii) in the intracellular NADH/NAD(+) ratios from 0.43 to 1.51. On synthetic media, under cellobiose excess the carbon flow was also equilibrated by three overflows: exopolysaccharide, extracellular protein, and amino acid excretions. At D = 0.115 h(-1), 34% of the cellobiose consumed was converted into exopolysaccharides; this deviation of the carbon flow and the increase of the phosphoroclastic activity decreased dramatically the pyruvate excretion and explained the break in lactate production. Whatever the dilution rate, C. cellulolyticum, using ammonium and cellobiose excess, always spilled usual amino acids accompanied by other amino compounds. In vitro, GAPDH, phosphoroclastic reaction, alcohol dehydrogenase, and acetate kinase activities were high under conditions giving high in vivo specific production rates. There were also correlations between the in vitro lactate dehydrogenase activity and in vivo lactate production, but in contrast with the preceding activities, these two parameters decreased with D. All the results demonstrate that C. cellulolyticum was able to optimize carbon catabolism from cellulosic substrates in a synthetic medium.  相似文献   

7.
8.
Azotobacter beijerinckii was grown in ammonia-free glucose-mineral salts media in batch culture and in chemostat cultures limited by the supply of glucose, oxygen or molecular nitrogen. In batch culture poly-beta-hydroxybutyrate was formed towards the end of exponential growth and accumulated to about 74% of the cell dry weight. In chemostat cultures little poly-beta-hydroxybutyrate accumulated in organisms that were nitrogen-limited, but when oxygen limited a much increased yield of cells per mol of glucose was observed, and the organisms contained up to 50% of their dry weight of poly-beta-hydroxybutyrate. In carbon-limited cultures (D, the dilution rate,=0.035-0.240h(-1)), the growth yield ranged from 13.1 to 19.8g/mol of glucose and the poly-beta-hydroxybutyrate content did not exceed 3.0% of the dry weight. In oxygen-limited cultures (D=0.049-0.252h(-1)) the growth yield ranged from 48.4 to 70.1g/mol of glucose and the poly-beta-hydroxybutyrate content was between 19.6 and 44.6% of dry weight. In nitrogen-limited cultures (D=0.053-0.255h(-1)) the growth yield ranged from 7.45 to 19.9g/mol of glucose and the poly-beta-hydroxybutyrate content was less than 1.5% of dry weight. The sudden imposition of oxygen limitation on a nitrogen-limited chemostat culture produced a rapid increase in poly-beta-hydroxybutyrate content and cell yield. Determinations on chemostat cultures revealed that during oxygen-limited steady states (D=0.1h(-1)) the oxygen uptake decreased to 100mul h(-1) per mg dry wt. compared with 675 for a glucose-limited culture (D=0.1h(-1)). Nitrogen-limited cultures had CO(2) production values in situ ranging from 660 to 1055mul h(-1) per mg dry wt. at growth rates of 0.053-0.234h(-1) and carbon-limited cultures exhibited a variation of CO(2) production between 185 and 1328mul h(-1) per mg dry wt. at growth rates between 0.035 and 0.240h(-1). These findings are discussed in relation to poly-beta-hydroxybutyrate formation, growth efficiency and growth yield during growth on glucose. We suggest that poly-beta-hydroxybutyrate is produced in response to oxygen limitation and represents not only a store of carbon and energy but also an electron sink into which excess of reducing power can be channelled.  相似文献   

9.
The carbon metabolism of derivatives of Streptomyces lividans growing under phosphate limitation in chemostat cultures and producing the antibiotics actinorhodin and undecylprodigiosin was investigated. By applying metabolic flux analysis to a stoichiometric model, the relationship between antibiotic production, biomass accumulation, and carbon flux through the major carbon metabolic pathways (the Embden Meyerhoff Parnas and pentose-phosphate pathways) was analyzed. Distribution of carbon flux through the catabolic pathways was shown to be dependent on growth rate, as well as on the carbon and energy source (glucose or gluconate) used. Increasing growth rates promoted an increase in the flux of carbon through glycolysis and the pentose-phosphate pathway. The synthesis of both actinorhodin and undecylprodigiosin was found to be inversely related to flux through the pentose-phosphate pathway.  相似文献   

10.
Hydrodynamic stress and lethal events in sparged microalgae cultures   总被引:3,自引:0,他引:3  
The effect of high superficial gas velocities in continuous and batch cultures of the strains Dunaliella tertiolecta, Chlamydomonas reinhardtii wild-type and cell wall-lacking mutant was studied in bubble columns. No cell damage was found for D. tertiolecta and C. reinhardtii (wild-type) up to superficial gas velocities of 0.076 and 0.085 m s(-1), respectively, suggesting that high superficial gas velocities alone cannot be responsible for cell death and, consequently, bubble bursting cannot be the sole cause for cell injury. A death rate of 0.46 +/- 0.08 h(-1) was found for C. reinhardtii (cell wall-lacking mutant) at a superficial gas velocity of 0.076 m s(-1), and increased to 1.01 +/- 0.29 h(-1) on increasing superficial gas velocity to 0.085 m s(-1). Shear sensitivity is thus strain-dependent and to some extent the cell wall plays a role in the protection against hydrodynamic shear. When studying the effect of bubble formation at the sparger in batch cultures of D. tertiolecta by varying the number of nozzles, a death rate of 0.047 +/- 0.016 h(-1) was obtained at high gas entrance velocities. D. tertiolecta was cultivated in a pilot-plant reactor under different superficial gas velocities of up to 0.026 m s(-1), with relatively low gas entrance velocities and no cell damage was observed. There is some indication that the main parameter causing cell death and damage was the gas entrance velocity at the sparger.  相似文献   

11.
The continuous flow acetone-butanol fermentation conducted at lowered inlet feed sugar concentrations and at a constant dilution rate D =0.075 h(-1) demonstrated a significant decreases in the availability of the cell population "reduction energy" (F/X), resulting in an exclusive accumulation of intermediate acids under those conditions. The cultures resumed its solvent production activity when the inlet sugar concentration in the feed stream was increased from 20 to 40 g/L at the same low growth/dilution rates. A linear correlation between the culture reduction content (F/X) and the specific butanol rate (q(B)) was observed under the present conditions, indicating the necessity of the NADH availability for the increased solvent production.  相似文献   

12.
Vancomycin production in batch and continuous culture   总被引:5,自引:0,他引:5  
Production of the glycopeptide antibiotic vancomycin by two Amycolatopsis orientalis strains was examined in batch shake flask culture in a semidefined medium with peptone as the nitrogen source. Different growth and production profiles were observed with the two strains; specific production (Y(p/x)) was threefold higher with strain ATCC 19795 than with strain NCIMB 12945. A defined medium with amino acids as the nitrogen source was developed by use of the Plackett-Burman statistical screening method. This technique identified certain amino acids (glycine, phenylalanine, tyrosine, and arginine) that gave significant increased specific production, whereas phosphate was identified as inhibitory for high specific vancomycin production. Experiments made with the improved medium and strain ATCC 19795 showed that vancomycin production kinetics were either growth dissociated or growth associated, depending on the amino acid concentration. In chemostat culture at a constant dilution rate (0.087 h(-1)), specific vancomycin production rate (q(vancomycin)) decreased linearly as the medium phosphate concentration was increased from 2 to 8 mM. In both phosphate and glucose limited chemostats, q(vancomycin) was a function of specific growth rate; the maximum value was observed at D = 0.087 h(-1) (52% of the maximum specific growth rate). Under phosphate limited growth conditions, q(vancomycin) was threefold higher (0.37 mg/g dry weight/h) than under glucose limitation (0.12 mg/g dry weight/h). (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
Summary Zymomonas mobilis UQM 2716 was grown anaerobically in continuous culture (D = 0.1/h; 30° C) 3nder glucose or nitrogen limitation at pH 6.5 or 4.0. The rates of glucose consumption and ethanol production were lowest during glucose-limited growth at pH 6.5, but increased during growth at pH 4.0 or under nitrogen limitation, and were highest during nitrogen-limited growth at pH 4.0. The uncoupling agent CCCP substantially increased the rate of glucose consumption by glucose-limited cultures at pH 6.5, but had much less effect at pH 4.0. Washed cells also metabolised glucose rapidly, irrespective of the conditions under which the original cultures were grown, and the rates were variably increased by low pH and CCCP. Broken cells exhibited substantial ATPase activity, which was increased by growth at low pH. It was concluded that the fermentation rates of cultures growing under glucose or nitrogen limitation at pH 6.5, or under glucose limitation at pH 4.0, are determined by the rate at which energy is dissipated by various cellular activities (including growth, ATP-dependent proton extrusion for maintenance of the protonmotive force and the intracellular pH, and an essentially constitutive ATP-wasting reaction that only operates in the presence of excess glucose). During growth under nitrogen limitation at pH 4.0 the rate of energy dissipation is sufficiently high for the fermentation rate to be determined by the inherent catalytic activity of the catabolic pathway.Abbreviations CCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone - qG rate of glucose consumption (g glucose/g dry wt cells/h) - qE rate of ethanol production (g ethanol/g dry wt cells/h) - Y growth yield (g dry wt cells/g glucose) - D dilution rate Offprint requests to: C. W. Jones  相似文献   

14.
Development of surface grown cultures of Aspergillus niger no. 10 was studied at two experimental levels: (a) following the time course of the biomass density (X [=] mg cm(-2)) and fitting the data by the logistic expression, which yielded a macroscopic specific growth rate expressed as mu(obs) = (dX/Xdt)[1-(X/X(max))](-1); and (b) measuring morphometric parameters like the specific elongation rate (k) of the germ tubes and their diameters (D(h)), the colony rate of radial extension (u(r)), and the mean length of distal hyphae (L(av)) to estimate the specific growth rate with the following proposed expression: mu(calc) = u(r)ln2[L(av)ln(L(av)/D(h))](-1). Increases in the initial glucose concentration (10, 40, 70, 120, 200, and 300 g L(-1)) caused reductions in the specific growth rates, the elongation kinetics of the germ tubes, and the hyphal diameter, nevertheless, u(r) and X(max) presented parabolic behavior, showing their maxima in the interval of 90 to 120 g L(-1) of glucose. The overall macroscopic effect of the tested concentrations of glucose on surface grown cultures of A. niger was to produce densely packed and slowly extending colonies, where changes in hyphal lengths and diameters were significant. There was good agreement between mu(obs) and mu(calc) values. Hence, this work validates a kinetic model based on morphometric data to estimate the specific growth rate of molds, obtained from dry weight data, using mold cultures grown in the same solid medium i.e., agar plates. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 287-294, 1997.  相似文献   

15.
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h(-1), biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose x liter(-1) the cell density at steady state leveled off. The percentage of cellulose degradation declined from 32.3 to 8.3 with 1.9 and 27.0 g of cellulose x liter(-1), respectively, while cellodextrin accumulation rose and represented up to 4.0% of the original carbon consumed. The shift from cellulose-limited to cellulose-sufficient conditions was accompanied by an increase of both the acetate/ethanol ratio and lactate biosynthesis. A kinetics study of C. cellulolyticum metabolism in cellulose saturation was performed by varying D with 18.1 g of cellulose x liter(-1). Compared to cellulose limitation (M. Desvaux, E. Guedon, and H. Petitdemange, J. Bacteriol. 183:119-130, 2001), in cellulose-sufficient continuous culture (i) the ATP/ADP, NADH/NAD+, and q(NADH produced)/q(NADH used) ratios were higher and were related to a more active catabolism, (ii) the acetate/ethanol ratio increased while the lactate production decreased as D rose, and (iii) the maximum growth yield (Y(max)X/S) (40.6 g of biomass per mol of hexose equivalent) and the maximum energetic yield (Y(max)ATP) (19.4 g of biomass per mol of ATP) were lowered. C. cellulolyticum was then able to regulate and optimize carbon metabolism under cellulose-saturated conditions. However, the facts that some catabolized hexose and hence ATP were no longer associated with biomass production with a cellulose excess and that concomitantly lactate production and pyruvate leakage rose suggest the accumulation of an intracellular inhibitory compound(s), which could further explain the establishment of steady-state continuous cultures under conditions of excesses of all nutrients. The following differences were found between growth on cellulose in this study and growth under cellobiose-sufficient conditions (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, Biotechnol. Bioeng. 67:327-335, 2000): (i) while with cellobiose, a carbon flow into the cell of as high as 5.14 mmol of hexose equivalent g of cells(-1) x h(-1) could be reached, the maximum entering carbon flow obtained here on cellulose was 2.91 mmol of hexose equivalent g of cells(-1) x h(-1); (ii) while the NADH/NAD+ ratio could reach 1.51 on cellobiose, it was always lower than 1 on cellulose; and (iii) while a high proportion of cellobiose was directed towards exopolysaccharide, extracellular protein, and free amino acid excretions, these overflows were more limited under cellulose-excess conditions. Such differences were related to the carbon consumption rate, which was higher on cellobiose than on cellulose.  相似文献   

16.
In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates (0.05 h(-1) to 0.40 h(-1)) using a 2 L stirred tank fermenter with a working volume of 600 ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, mu-max, was estimated at 0.40 h(-1), and the Monod cell growth saturation constant, Ks, at approximately 0.25 g/L. Maximum cell viability (1.3 x 10(10) CFU/ml) was achieved in the dilution rate range of D = 0.28 h(-1) to 0.35 h(-1). Both maximum viable cell yield and productivity were achieved at D = 0.35 h(-1). The continuous cultivation of L. rhamnosus at D = 0.35 h(-1) resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.  相似文献   

17.
Saccharomyces cerevisiae ATCC 96581 was cultivated in a chemostat reactor with undetoxified dilute acid softwood hydrolysate as the only carbon and energy source. The effects of nutrient addition, dilution rate, cell recirculation, and microaerobicity were investigated. Fermentation of unsupplemented dilute acid lignocellulose hydrolysate at D = 0.10 h(-1) in an anaerobic continuous reactor led to washout. Addition of ammonium sulfate or yeast extract was insufficient for obtaining steady state. In contrast, dilute acid lignocellulose hydrolysate supplemented with complete mineral medium, except for the carbon and energy source, was fermentable under anaerobic steady-state conditions at dilution rates up to 0.14 h(-1). Under these conditions, washout occurred at D = 0.15 h(-1). This was preceded by a drop in fermentative capacity and a very high specific ethanol production rate. Growth at all different dilution rates tested resulted in residual sugar in the chemostat. Cell recirculation (90%), achieved by cross-flow filtration, increased the sugar conversion rate from 92% to 99% at D = 0.10 h(-1). Nutrient addition clearly improved the long-term ethanol productivity in the recirculation cultures. Application of microaerobic conditions on the nutrient-supplemented recirculation cultures resulted in a higher production of biomass, a higher cellular protein content, and improved fermentative capacity, which further improves the robustness of fermentation of undetoxified lignocellulose hydrolysate.  相似文献   

18.
The aim of this study was to establish the requirements for macrophage activating factor (MAF) production by sea bass head-kidney leucocytes and the kinetics of macrophage activation when exposed to MAF-containing supernatants and/or lipopolysaccharide (LPS), a known macrophage stimulant. MAF activity was found in culture supernatants of total head-kidney leucocytes pulsed with 5 microg ml(-1)Con A, 5 or 10 ng ml(-1)PMA and 100 ng ml(-1)calcium ionophore, or 10 microg ml(-1)Con A alone, as assessed by the capacity to prime macrophages for enhanced production of reactive oxygen intermediates (ROI). Mixed leucocyte cultures from two or eight fish showed higher MAF activity after stimulation, indicating that a mixed leucocyte reaction was also important for MAF production. MAF-induced activation of macrophage cultures was highest at 18 h of exposure and was lost by 72 h except for MAF induced by Con A-stimulation alone. LPS primed macrophages for increased ROI production at early incubation times and down-regulated ROI production after 24 h. LPS had no effect in further stimulating the MAF-induced priming effect on production of ROI and down-regulated the MAF-priming by 48 h. Sea bass head-kidney macrophages did not show increased nitrite production when exposed to MAF and/or LPS, which may be related to their differentiation status.  相似文献   

19.
Bifidobacterium longum ATCC 15707 cell production was studied in MRS medium supplemented with whey permeate (MRS-WP) during free-cell batch fermentations and continuous immobilized-cell cultures. Very high populations were measured after 12 h batch cultures in MRS-WP medium controlled at pH 5.5 (1.7+/-0.5x10(10) cfu/ml), approximately 2-fold higher than in non-supplemented MRS. Our study showed that WP is a low-cost source of lactose and other components that can be used to increase bifidobacteria cell production in MRS medium. Continuous fermentation in MRS-WP of B. longum immobilized in gellan gum gel beads produced the highest cell concentrations in the effluent (4.9+/-0.9x10(9) cfu/ml) at a dilution rate (D) of 0.5 h(-1). However, maximal volumetric productivity (6.9+/-0.4x10(9) cfu ml(-1)h(-1)) during continuous cultures was obtained at D =2.0 h(-1), and was approximately 9.5-fold higher than during free-cell batch cultures at an optimal pH of 5.5 (7.2x10(8) cfu ml(-1)h(-1)).  相似文献   

20.
A two-stage continuous system in combination with a temperature-sensitive expression system were used as model systems to maximize the productivity of a cloned gene and minimize the problem associated with the plasmid instability for a high-expression recombinant. In order to optimize the two-stage fermentation process, the effects of such operational variables as temperature and dilution rate on productivity of cloned gene were studied using the model systems and a recombinant, Escherichia coli K12 DeltaH1 Deltatrp/pPLc23trp A1. When the expression of cloned gene is induced by raising the operating temperature above 38 degrees C, a significant decrease in the colony-forming-units (CFU) of the plasmid-harboring cell was observed, and the decrease was related to the product concentration. In order to describe this phenomenon, a new kinetic parameter related to the metabolic stress (metabolic stress factor) was introduced. It is defined as the ratio of the rate of change of pheno-type from colony-forming to non-colony-forming cells to the product accumulation per unit cell mass. At a fixed temperature of 40 degrees C, the varying dilution rate D in the range of 0.35-0.90 h(-1) did not affect the metabolic stress factor significantly. At a fixed dilution rate of D = 0.35 h(-1), this factor remained practically constant up to 41 degrees C but increased rapidly beyond 41 degrees C. The effects of temperature and dilution rate in the second stage on the specific production rate were also studied while maintaining the apparent specific growth rate (mu(2) (app)) of the second stage constant at or near mu(2) (app) = 0.26 h(-1). Under a constant dilution rate, D(2) = 0.35 h(-1), the maximum specific production rate obtained was about q(p, max) = 38 units TrpA/mg cell/h at 41 degrees C. At a constant temperature, T(2) = 40 degrees C, specific production rate increased with decreasing dilution rate with in the dilution rate range of D(2) = 0.35-0.90 h(-1). Based on the results of our study, the optimal operating conditions found were dilution rate D(2) = 0.35 h(-1) and operating temperature T(2) = 41 degrees C at the apparent specific growth rate of 0.26 h(-1). Under the optimal operating conditions, about threefold increase in productivity was achieved compared to the best batch culture result. In addition, the fermentation period could be extended for more than 100 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号