首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, much effort is being invested in novel formulations of bioactive molecules, such as emulsions, for pharmaceutical, food, and cosmetic applications. Therefore, methods to produce emulsions with controlled-size droplets of uniform size distribution have been developed. On this concern, a microfluidic device called the microchannel (MC) was used in this work for emulsification. This is a novel method for producing monodispersed emulsion droplets with very narrow droplet size distribution and low energy input, due to the spontaneous droplet generation basically driven by the interfacial tension, unlike other conventional emulsification processes. This technology provides the formulation of oil-in-water (O/W) emulsions containing lipophilic active molecules with increased bioavailability, which may be readily absorbed by the human body. MC emulsification enables the preparation of highly monodispersed O/W emulsions, which may be applied as enhancer on active molecules delivery systems, as well as in foodstuff. In this study, formulations of O/W emulsions loaded with bioactive molecules, such as β-carotene and γ-oryzanol, were prepared by the MC emulsification process. Refined soybean oil containing the dissolved lipophilic molecule and either sugar ester or gelatin solution (1 wt.%) were used as the dispersed and continuous phases, respectively. The emulsification process conducted using the asymmetric straight-through MC plate enabled the production of monodispersed O/W emulsions, resulting in β-carotene-loaded O/W emulsions with average droplet size (d av) of 27.6 μm and coefficient of variation (CV) of 2.3% and γ-oryzanol-loaded droplets with d av of 28.8 μm and CV of 3.8%. The highly monodisperse β-carotene-loaded droplets were physically stable throughout the storage period observed, resulting in droplets with d av 28.2 μm and CV of 2.9% after 4 months storage in darkness at 5 °C. Single micrometer-sized monodisperse emulsions loaded with β-carotene were successfully formulated using the grooved MC emulsification, resulting in droplets with d av of 9.1 μm and CV of 6.2%. This work was funded by The Ministry of Agriculture, Forestry and Fisheries of Japan, through the Food Nanotechnology Project, and the Japan Society for the Promotion of Science.  相似文献   

2.
The release kinetics of four model aroma compounds from coarse (d 32 = 1.0 μm) and fine (d 32 = 0.25 μm) eicosane and hydrogenated palm stearin (HPS) emulsions prepared with either solid or liquid lipid droplets were measured using a model mouth instrument. For both lipids, the release of aroma compounds from emulsions with solid droplets was higher than from emulsions with liquid droplets. This difference was greater for less polar aroma compounds. The release from solid eicosane droplets increased with particle size but no such effect was observed for HPS emulsions, however, the release from solid eicosane was higher than solid HPS. The initial aroma release profile of the solid droplet emulsion matches that of a similar liquid oil emulsion but requires much less added aroma. Meeting presentation: Presented at 98th AOCS Annual Meeting and Expo in Quebec City, Canada.  相似文献   

3.
This study estimated the construction const (CC) and maintenance cost (MC) of leaf tissue on the basis of dry mass (CCMass, MCMass) and leaf area (CCArea, MCArea), as well as the maximum leaf gas exchange capacity, so as to examine leaf cost:benefit relationship in six dominant species of the ‘Bana’ vegetation. Minimum and maximum CCMass averaged 1.71 ± 0.03 and 1.78 ± 0.03 g glucose g−1. The CCMass showed a statistically significant positive correlation with crude fibre, and tended to decline as leaves were larger. Thus, smaller leaves tended to be built out of a more expensive material than that found in species bearing larger leaves. The average CCArea of the ‘Bana’ species was 376 ± 15 g glucose m−2. A robust correlation was found between CCArea with leaf dry mass to leaf area ratio, as well as with leaf thickness, but not with leaf density. MCMass (g glucose g−1 day−1) and MCArea (g glucose m−2 day−1) were positively correlated. Maximum and minimum MCMass increased significantly with protein and lipid content, respectively. Maximum carbon assimilation (A max) was positively correlated with CCArea. All the species operated at high stomatal conductance (g s) and C i/C a which suggested low short-term water use efficiency. Potential nitrogen use efficiency (PNUE = A max/N) averaged 35.4 ± 1.8 mmol CO2 mol−1 N. As the sclerophylly index (g crude fibre g−1 protein) increased, the ratio of CCArea to A max increased significantly. This result suggests a trade-off between investments in an expensive resistant sclerophyllous leaf which should maximize carbon gain in the long term.  相似文献   

4.
Flow-focussing technology was harnessed to enable generation of large droplet aerosols within high-level microbiological containment. The Collison nebuliser and flow-focussing aerosol generator (FFAG) produced aerosols from distilled water with average mass median aerodynamic diameters (MMAD) of 4.19 and 11.93 μm, respectively. The medium type [water, phosphate buffered saline (PBS) or microbiological broth] had minimal effect on the droplet size generated by the FFAG. The FFAG can be modulated to generate reproducible aerosols with a wide range of MMADs (9–105 μm). The number of particulates (i.e. fluospheres) contained within the droplets increased as the MMAD increased from 12 to 50 μm. The technology described can be used for the exposure of small-animal models to large droplet aerosols (>10 μm) and has applications in healthcare, pharmaceutical, agricultural and biodefence environments.  相似文献   

5.
The effect of acetone solution on the mortality of rice planthoppers, Nilaparvata lugens (St?l), Sogatella furcifera (Horváth), and Laodelphax striatellus (Fallén), was examined, as it is widely used as a solvent solution in a topical application method for monitoring insecticide susceptibility. The mortality of N. lugens and S. furcifera was significantly higher at 0.32 and 0.28 μl or more acetone droplets per insect than in the control treatment (without acetone), respectively. The mortality of L. striatellus was significantly higher at 0.24 μl or more acetone droplets per insect than in the control treatment. Another commonly used solvent solution, methanol, had a similar effect on L. striatellus. The most standard topical application method uses a hand-operated micro-applicator (Burkard Manufacturing Co., Ltd., UK) equipped with a 50-μl micro-syringe, which can deliver a very small amount of droplets of insecticide/acetone solution per insect, 0.08 μl, so there is no effect of acetone solution on the mortality of N. lugens, S. furcifera, and L. striatellus. However, other equipment for topical application, a repeating dispenser (Hamilton Co., USA) attached with a 10-μl micro-syringe, can deliver a 0.24-μl droplet at a minimum. This equipment can be used for N. lugens and S. furcifera, but not for L. striatellus. It is necessary to choose appropriate equipment for each rice planthopper so that they are not affected by the solvent solution.  相似文献   

6.
Some aquatic systems have disproportionately high nutrient processing rates, and may be important to nutrient retention within river networks. However, the contribution of such biogeochemical hot spots also depends on water residence time and hydrologic connections within the system. We examined the balance of these factors in a comparative study of nitrate (NO3 ) uptake across stream and flow-through wetland reaches of northern Wisconsin, USA. The experimental design compared NO3 uptake at different levels: the ecosystem level, for reaches (n = 9) consisting of morphologically contrasting subreaches (SLOW, low mean water velocity; REF, reference, or higher mean water velocity); the sub-ecosystem level, for subreaches consisting of morphologically contrasting zones (TS, transient storage zone; MC, main channel zone). SLOW subreaches had 45% lower ecosystem-level uptake rate (K, t−1) on average, indicating reduced uptake efficiency in flow-through wetlands relative to streams. The four largest K values (total n = 24) also occurred in REF subreaches. TS:MC uptake rate varied (range 0.1–6.0), but MC zones consistently accounted for most NO3 uptake by the ecosystem. In turn, TS influence was limited by a tradeoff between TS zone uptake rate and the strength of TSMC hydrologic connection (α or F med). Additional modeling of published hydrologic parameter sets showed that strong MC dominance of uptake (>75% of total uptake), at the scale of solute release methods (meters to kilometers, hours to days), is common among streams and rivers. Our results emphasize that aquatic nutrient retention is the outcome of a balance involving nutrient uptake efficiency, water residence time, and the strength of hydrologic connections between nutrient sources and sinks. This balance restricts the influence of hydrologically disconnected biota on nutrient transport, and could apply to diverse ecosystem types and sizes.  相似文献   

7.
The phase separation behavior of whey protein isolate (WPI) aggregates and κ-carrageenan (κ-car) mixtures was studied using the Vrij's theory and image analysis method. The intrinsic parameter (molecular mass and radius of gyration) for κ-car and the WPI aggregates was determined using intrinsic viscosity and reduced viscosity of each biopolymer. Confocal microscopy observations revealed the appearance of protein aggregate domains when phase separation occurred, with microgel droplets of WPI included in a continuous κ-car phase. The occurrence of aggregate droplet has not been reported before for the phase-separating WPI/κ-car mixtures. So far, network emulsion-like microstructures have been observed with WPI in a network structure. By using different WPI concentrations (4% or 6%), the microstructure of the systems changes while increasing the κ-car concentration. The size of the microgels (1–2.5 μm) depends on both κ-car and WPI concentration. Confocal microscopy combined with image analysis (method of the variance) was used effectively as objective means to determine the phase boundary of the phase-separating systems. Additional information on the depletion layer thickness, Δ, was obtained using self-consistent field theory. The results show that Δ has a constant value of 80.5 nm for ck - car \prec 2 g/l {{\hbox{c}}_{\kappa {\rm{ - car}}}} \prec {\hbox{2 g}}/{l} , in agreement with ∆ ≈ R g (radius of gyration). Above this concentration, Δ decreases as a function of κ-car concentration. The experimental phase boundary was well predicted using Vrij's theory. This work showed a new approach to generate phase diagrams (e.g., under shear) of phase-separating systems.  相似文献   

8.
The objective of this study was to investigate the influence of interfacial composition and electrical charge on the in vitro digestion of emulsified fats by pancreatic lipase. An electrostatic layer-by-layer deposition technique was used to prepare corn oil-in-water emulsions (3 wt% oil) that contained droplets coated by (1) lecithin, (2) lecithin–chitosan, or (3) lecithin–chitosan–pectin. Pancreatic lipase (1.6 mg mL−1) and/or bile extract (5.0 mg mL−1) were added to each emulsion, and the particle charge, droplet aggregation, and free fatty acids released were measured. In the presence of bile extract, the amount of fatty acids released per unit amount of emulsion was much lower in the emulsions containing droplets coated by lecithin–chitosan (38 ± 16 μmol mL−1) than those containing droplets coated by lecithin (250 ± 70 μmol mL−1) or lecithin–chitosan–pectin (274 ± 80 μmol mL−1). In addition, there was much more extensive droplet aggregation in the lecithin–chitosan emulsion than in the other two emulsions. We postulated that lipase activity was reduced in the lecithin–chitosan emulsion as a result of the formation of a relatively thick cationic layer around each droplet, as well as the formation of large flocs, which restricted the access of the pancreatic lipase to the lipids within the droplets. Our results also suggest that droplets initially coated by a lecithin–chitosan–pectin layer did not inhibit lipase activity, which may have been because the chitosan–pectin desorbed from the droplet surfaces thereby allowing the enzyme to reach the lipids; however, further work is needed to establish this. This information could be used to create food emulsions with low caloric level, or to optimize diets for individuals with lipid digestion problems.  相似文献   

9.
Photodestruction of chlorophyll (Chl) inZea mays leaves, after their irradiation with high photon fluence rate (5000 μmol m−2 s{−1}), was determined in fragments of whole leaves (WL) and also in fraction of mesophyll cells (MC) and bundle sheath cells (BSC) after their mechanical separation. The lag phase and the phase of photooxidation of Chl in MC chloroplasts were shorter than in BSC. Duration of both phases was reduced when the leaves were placed in 0 % CO2 concentration in the atmosphere, while the increase of CO2 concentration up to 0.3 % totally protected Chl against photodestruction in BSC within the 9 h experiment. During that period of time Chl was destructed by about 30 % in MC.  相似文献   

10.
In vitro physiology and carbon metabolism can be affected by the sink–source relationship. The effect of different sucrose concentrations (10, 30, and 50 g L−1), light intensities (80 and 150 μmol m−2 s−1), and CO2 levels (375 and 1,200 μmol mol−1) were tested during plantain micropropagation in temporary immersion bioreactors. Activities of pyruvate kinase, phosphoenol pyruvate carboxylase, and the photosynthesis rate were recorded. From the morphological and practical point of view, the best results were obtained when plants were cultured with 30 g L−1 sucrose, 80 μmol m−2 s−1 light intensity, and 1,200 μmol mol−1 CO2 concentration. This treatment improved leaf and root development, reduced respiration during in vitro culture, and increased starch level at the end of the hardening phase. In addition to that, the number of competent plants was increased from 80.0% to 91.0% at the end of the in vitro phase and the survival percentage from 95.71% to 99.80% during ex vitro hardening.  相似文献   

11.
Nannochloropsis sp. was grown to the exponential phase and transferred to the high CO2 (2,800 μl l−1) and irradiance (100 μmol photons m−2 s−1) condition with different levels of nitrate and phosphate for 72 h, then the photosynthetic activity and inorganic carbon acquisition of the alga were measured. The apparent photosynthetic efficiency (α) of Nannochloropsis sp. decreased with increasing NO3 concentration from 150 to 3,000 μM, and the high nitrate-grown cells showed the lowest levels of light-saturated photosynthetic rate (P m), while the low nitrate-grown cells showed the highest levels of dark respiration rate (R d). The maximal light-saturated photosynthetic rate and the minimal dark respiration rate were seen under the middle nitrate condition. When the nitrate concentration ranged from 150 to 3,000 μM, the affinity for inorganic carbons of Nannochloropsis sp. increased sharply with the increasing NO3 concentration to 300 μM and then decreased significantly. The middle phosphate-grown cells exhibited the highest light-saturated photosynthetic rate and apparent photosynthetic efficiency, however, the affinity for inorganic carbons of Nannochloropsis sp. was the maximum under the low phosphate condition. It was shown that the appropriate nitrogen and phosphorus levels were of vital importance to the photosynthesis of cells.  相似文献   

12.
Sugarcane (Saccharum spp. hybrids) is an interspecific hybrid with a highly polyploid and frequently aneuploid genome. This C4 grass accounts for nearly 70% of the global sugar production and more recently has become an important biofuel feedstock. Biolistic gene transfer of plasmid DNA is the most frequently used approach for genetic transformation of sugarcane. Minimal expression cassettes lacking vector backbone sequences (MC) have been reported to support simple transgene integration in other species. In this study, we introduced a MC of nptII into embryogenic callus derived from immature leaf whorl cross-sections by biolistic gene transfer. The precipitation equivalents of 12.5, 25 or 50 ng of the nptII MC were delivered per shot to the target tissue with 1.0 μm gold particles. A total of 203 independent putative transgenic plants were regenerated following 80 bombardments and selection on geneticin or paromomycin containing media and 176 transgenic lines were confirmed with PCR. Twenty independent transgenic lines were selected for Southern blot analysis and expression analysis by NPTII ELISA from each of the three treatments. Genomic DNA from transgenic sugarcane plants displayed two to 13 nptII hybridization signals on Southern blots. There was a trend toward reduced transgene integration complexity and reduced transgene expression levels when lower (12.5 ng) MC was used per shot. These results demonstrate that backbone free MCs can be efficiently integrated and expressed in sugarcane.  相似文献   

13.
The sizes of oil droplets (globules) and the yolk sphere in the Medaka Oryzias latipes egg were measured in the developmental period from fertilization to hatching. Oil droplets coalesced with one another in the process of shifting toward the vegetal pole, and a single large oil droplet was finally located at the vegetal pole region in most eggs 2 days post-fertilization. The volume of the yolk sphere steeply decreased in the period from 2 to 8 days post-fertilization. The volume of oil droplets also declined linearly from 4 to 10 days post-fertilization. Lipid components exhibited no distinct change during embryogenesis. In order to verify whether oil droplets were required for development of Medaka embryos, oil droplets were artificially removed from the early developing embryos without the chorion (egg envelope). Naked embryos without the oil droplet developed normally to fry in the sterilized incubation medium and grew to the same mature fry as those grown from the control embryos.  相似文献   

14.
109Cd uptake was studied using the highly differentiated TC7 clone of Caco-2 cells as a model of human enterocyte function. Intracellular accumulation of 0.3 μm 109Cd involved a rapid and a slow uptake phase, which resulted in complete equilibration (t ?= 17.3 ± 1.3 min) with an apparent in-to-out distribution ratio (α e ) of 11.6 ± 0.8. The amplitude of the rapid phase (U 0) and the rate of the slow phase (V) were similarly reduced in the less differentiated PF11 clone, but comparable α e values were observed at equilibrium. In both clones, the t ? and α e values increased and decreased, respectively, upon addition of unlabeled Cd to the uptake media. In TC7 cells, 109Cd uptake at 1 min (U 1) was unaffected by Ca concentrations four order of magnitude in excess, but both U 0 and V demonstrated similar sensitivities to unlabeled Cd, Zn and sulfhydryl-reactive agents. Only U 0 disappeared when EDTA was present in the wash solutions. U 1 showed saturation kinetics and the data were found compatible with a model assuming rapid initial Cd binding and transport through a unique transport protein (K m = 3.8 ± 0.7 μm). Cd efflux kinetics demonstrated partial reversibility in EDTA-containing solutions, suggesting that the taken up Cd might be both tightly and loosely bound to intracellular binding sites. However, the displacement of 109Cd measured at 65 min failed to reveal this heterogeneity: the data were found compatible with a model equation assuming the presence of one class of high-capacity high-affinity binding sites. We conclude that a slow-transport fast-intracellular binding mechanism of Cd uptake best accounts for these results and that Cd transport most likely involves a carrier-type of protein unrelated to Ca absorption. Received: 19 January 1996/Revised: 23 January 1997  相似文献   

15.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   

16.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.  相似文献   

17.
N-alkylated polyamine analogues have potential as anticancer and antiparasitic drugs. However, their metabolism in the host has remained incompletely defined thus potentially limiting their utility. Here, we have studied the degradation of three different spermine analogues N,N′-bis-(3-ethylaminopropyl)butane-1,4-diamine (DESPM), N-(3-benzyl-aminopropyl)-N′-(3-ethylaminopropyl)butane-1,4-diamine (BnEtSPM) and N,N′-bis-(3-benzylaminopropyl)butane-1,4-diamine (DBSPM) and related mono-alkylated derivatives as substrates of recombinant human polyamine oxidase (APAO) and spermine oxidase (SMO). APAO and SMO metabolized DESPM to EtSPD [K m(APAO) = 10 μM, k cat(APAO) = 1.1 s−1 and K m(SMO) = 28 μM, k cat(SMO) = 0.8 s−1, respectively], metabolized BnEtSPM to EtSPD [K m(APAO) = 0.9 μM, k cat(APAO) = 1.1 s−1 and K m(SMO) = 51 μM, k cat(SMO) = 0.4 s−1, respectively], and metabolized DBSPM to BnSPD [K m(APAO) = 5.4 μM, k cat(APAO) = 2.0 s−1 and K m(SMO) = 33 μM, k cat(SMO) = 0.3 s−1, respectively]. Interestingly, mono-alkylated spermine derivatives were metabolized by APAO and SMO to SPD [EtSPM K m(APAO) = 16 μM, k cat(APAO) = 1.5 s−1; K m(SMO) = 25 μM, k cat(SMO) = 8.2 s−1; BnSPM K m(APAO) = 6.0 μM, k cat(APAO) = 2.8 s−1; K m(SMO) = 19 μM, k cat(SMO) = 0.8 s−1, respectively]. Surprisingly, EtSPD [K m(APAO) = 37 μM, k cat(APAO) = 0.1 s−1; K m(SMO) = 48 μM, k cat(SMO) = 0.05 s−1] and BnSPD [K m(APAO) = 2.5 μM, k cat(APAO) = 3.5 s−1; K m(SMO) = 60 μM, k cat(SMO) = 0.54 s−1] were metabolized to SPD by both the oxidases. Furthermore, we studied the degradation of DESPM, BnEtSPM or DBSPM in the DU145 prostate carcinoma cell line. The same major metabolites EtSPD and/or BnSPD were detected both in the culture medium and intracellularly after 48 h of culture. Moreover, EtSPM and BnSPM were detected from cell samples. Present data shows that inducible SMO parallel with APAO could play an important role in polyamine based drug action, i.e. degradation of parent drug and its metabolites, having significant impact on efficiency of these drugs, and hence for the development of novel N-alkylated polyamine analogues.  相似文献   

18.
The purpose of this study was to prepare monodisperse gelatin microcapsules containing an active agent using microchannel (MC) emulsification, a novel technique for preparing water-in-oil (W/O) and oil-in-water (O/W) emulsions. As the first step in applying MC emulsification to the preparation of monodisperse gelatin microcapsules, simple gelatin microbeads were prepared using this technique. A W/O emulsion with a narrow size distribution containing gelatin in the aqueous phase was created as follows. First, the aqueous disperse phase was fed into the continuous phase through the MCs at 40°C (operating pressure: 3.9 kPa). The emulsion droplets had an average particle diameter of 40.7 μm and a relative standard deviation of 5.1%. The temperature of the collected emulsion was reduced and maintained at 25°C overnight. The gelatin microbeads had a smooth surface after overnight gelation; the average particle diameter was calculated to be 31.6 μm, and the relative standard deviation, 7.3%. The temperature was then lowered to 5°C by rapid air cooling and finally dried. The gelatin beads were dried and could be resuspended well in iso-octane. The had an average particle diameter of 15.6 μm, and a relative standard deviation of 5.9%. Using MC emulsification, we were able to prepare gelatin microbeads with a narrow size distribution. Since this emulsification technique requires only a low-energy input, it may create desirable experimental conditions for microencapsulation of unstable substances such as peptides and proteins. This method is promising for making monodisperse microbeads.  相似文献   

19.
Understanding of bacterial survival in aerosols is crucial for controlling infection transmission via airborne aerosols and/or large droplets routes. The cell viability changes of four bacteria species (Escherichia coli K12 JM109; Acinetobacter sp. 5A5; Pseudomonas oleovorans X5; and Staphylococcus aureus X8), three Gram-negative and one Gram-positive, in a large evaporating droplet of size 1,800 μm in diameter on teflon-coated slides were measured using the LIVE/DEAD BacLight solution and a microscope. Droplets of three levels of salinity (0, 0.9, and 36% w/v) were tested. All four species survived well during the droplet evaporation process, but died mostly at the time when droplets were dried out at 40–45 min. The final bacteria survival rate after droplets were completely dried was dependent on bacteria species and the salinity of the suspension solution. Droplet evaporation over the first 35–40 min had no adverse effect on bacterial survival for the droplets tested. The lethal effect of desiccation was found to be the most important death mechanism.  相似文献   

20.
Catches of the economically important Nile tilapia (Oreochromis niloticus L.) from two eutrophic tropical lakes in Uganda, Lake Mburo and Murchison Bay, Lake Victoria, were examined to determine the presence of microcystins (MCs) in gut, liver and muscle of the fish. Analysis for MCs (RR, LR and YR) in both fish and water samples was by liquid chromatography coupled with mass spectroscopy (LC-MS) method. Physico-chemical parameters were also measured to establish the status of both lakes. MC-RR was the most prominent MC detected in Lake Mburo and Murchison Bay samples, there was no evidence of significant seasonal variation in the concentration of MCs in fish tissue. MCs were detected in all water samples from both study lakes. The mean concentration of MCs in water was found higher in dry times for Lake Mburo (P < 0.05) and higher in wet times for Murchison Bay (P < 0.05). MC concentrations in the fish guts were positively related with MC concentrations in water samples from Murchison bay (P < 0.05), no such correlation was found in Lake Mburo. In eutrophic tropical lakes, fish seem to have a high tolerance to the toxicity of cyanotoxins including MCs. However, there is a possibility of accumulating these toxins in their tissue with the threat of transferring them higher up in the food chain. Due to a low sample size and short sampling period, the results can only serve to highlight the potential risk of MC accumulation in Nile tilapia in these lakes. Further studies are needed for the purpose of risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号