首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The active vitamin A metabolite retinoic acid (RA) imprints gut-homing specificity on lymphocytes upon activation by inducing the expression of α4β7 integrin and CCR9. RA receptor (RAR) activation is essential for their expression, whereas retinoid X receptor (RXR) activation is not essential for α4β7 expression. However, it remains unclear whether RXR activation affects the RA-dependent CCR9 expression on T cells and their gut homing. The major physiological RA, all-trans-RA, binds to RAR but not to RXR at physiological concentrations. Cell-surface CCR9 expression was often induced on a limited population of murine naive CD4(+) T cells by all-trans-RA or the RAR agonist Am80 alone upon CD3/CD28-mediated activation in vitro, but it was markedly enhanced by adding the RXR agonist PA024 or the RXR-binding environmental chemicals tributyltin and triphenyltin. Accordingly, CD4(+) T cells treated with the combination of all-trans-RA and tributyltin migrated into the small intestine upon adoptive transfer much more efficiently than did those treated with all-trans-RA alone. Furthermore, naive TCR transgenic CD4(+) T cells transferred into wild-type recipients migrated into the small intestinal lamina propria following i.p. injection of Ag, and the migration was enhanced by i.p. injection of PA024. We also show that PA024 markedly enhanced the all-trans-RA-induced CCR9 expression on naturally occurring naive-like regulatory T cells upon activation, resulting in the expression of high levels of α4β7, CCR9, and Foxp3. These results suggest that RXR activation enhances the RAR-dependent expression of CCR9 on T cells and their homing capacity to the small intestine.  相似文献   

4.
It is well established that mechanical forces can regulate cell growth and guide tissue remodeling, yet little is known about how mechanical signals act at the cell surface membrane to produce biochemical changes in the cell. To explore this question, I used a mouse embryonic F9 vinculin-deficient cell line (gamma229), which, unlike wild-type cells, shows no fibronectin-dependent cell spreading. The wild-type cell line exhibited a twofold increase in area over four hours. I observed (i) an earlier rise in intracellular free calcium from approximately 0.2 to approximately 3 microm in wild-type compared with gamma229 cells, thus similar calcium levels after 4 h; (ii) an initial higher ratio of p-MAP/MAP-Kinase for gamma229, but similar FA-Kinase activation; and (iii) a marginal change in intracellular pH [pH](i) in both F9 cell lines. When I applied controlled local stresses directly to integrin receptors using RGD-coated magnetic beads, they displaced to a lesser extent in wild-type than in gamma229 cells. Both F9 cell lines showed a small stress-dependent rise in [Ca2+]i levels and similar PKA-c activity. In summary, the mechanical linkage of integrin-vinculin-cytoskeleton seemed not to be essential for chemical signal transduction.  相似文献   

5.
6.
The F9 murine embryonal carcinoma cell line represents a well-established system for the study of retinoid signaling in vivo. We have investigated the functional specificity of different retinoid X receptor (RXR)-retinoic acid (RA) receptor (RAR) isotype pairs for the control of expression of endogenous RA-responsive genes, by using wild-type (WT), RXR alpha(-/-), RAR alpha(-/-), RAR gamma(-/-), RXR alpha(-/-)-RAR alpha(-/-), and RXR alpha(-/-)-RAR gamma(-/-) F9 cells, as well as panRXR and RAR isotype (alpha, beta, and gamma)-selective retinoids. We show that in these cells the control of expression of different sets of RA-responsive genes is preferentially mediated by distinct RXR-RAR isotype combinations. Our data support the conclusion that RXR-RAR heterodimers are the functional units transducing the retinoid signal and indicate in addition that these heterodimers exert both specific and redundant functions on the expression of particular sets of RA-responsive genes. We also show that the presence of a given receptor isotype can hinder the activity of another isotype and therefore that functional redundancy between retinoid receptor isotypes can be artifactually generated by gene knockouts.  相似文献   

7.
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors.  相似文献   

8.
F9 embryonal mouse teratocarcinoma cells were differentiated to a primitive endoderm-like phenotype by retinoic acid and to a parietal endoderm-like phenotype by retinoic acid in combination with dibutyryl cyclic AMP. The secretion of tissue plasminogen activator (tPA) is a characteristic of the cells displaying the differentiated phenotypes. The fundamental question of whether tPA secretion is regulated acutely by G-protein-mediated transmembrane signaling was explored. Cells differentiated to primitive and parietal endoderm demonstrated a rapid tPA response to stimulation by beta-adrenergic agonist (isoproterenol). Adenylyl cyclase activity in response to isoproterenol and GTP, but not forskolin, was greater in primitive and parietal endoderm than F9 stem cells. Both primitive and parietal endoderm cells, but not F9 stem cells, displayed beta-adrenergic stimulation of cyclic AMP accumulation. Retinoic acid induced F9 stem cells to the primitive endoderm phenotype and increased beta-adrenergic receptor levels 3-fold. Gi alpha 2 levels declined, G beta-subunits increased, and Gs alpha levels were unchanged following differentiation to primitive endoderm. In parietal endoderm cells beta-adrenergic receptors increased 2-fold over F9 stem cells, Gi alpha 2 levels declined even further than in primitive endoderm, G beta-subunits increased compared to F9 stem cells, and Gs alpha levels again were unchanged. The marked potentiation of short-term stimulation of tPA secretion in the differentiated state may be best explained by the retinoic acid-induced increase in expression of beta-adrenergic receptors coupled with a decline in Gi alpha 2 levels. Short-term regulation by G-protein-linked receptors represents a novel mode for the control of tPA secretion.  相似文献   

9.
10.
Guinea-pig uterine glandular epithelial cells were grown in primary culture. During the 4-day initial culture period, a 6.7 fold increase in DNA synthesis and a doubling time of approximately 30 hours were observed. Then the cells were submitted to serum depletion (60 hours) and the quiescent cells were stimulated with 15% fetal calf serum (FCS). The control cells were submitted to 1% heated and dextran-coated charcoal stripped FCS. In stimulated cells, the DNA synthesis increased and peaked between the 12th and 24th hour. In these cells, c-fos mRNAs increased rapidly, within 30 min., peaked at 75 min. (ratio to the control = 2.5), and returned to basal level within 90 min. These results prove that uterine epithelial cells in primary culture are able to respond to unspecific mitogen by both rapid expression of c-fos gene and DNA synthesis, suggesting that this cell culture system will be useful in studying the growth regulation in endometrium.  相似文献   

11.
Aberrant activation of the Wnt signaling pathway is a common event in human tumor progression. Wnt signaling has also been implicated in maintaining a variety of adult and embryonic stem cells by imposing a restraint to differentiation. To understand the effect of Wnt signaling on the differentiation of epithelial cells, we used mouse teratocarcinoma F9 cells as a model. The F9 cells can be differentiated into visceral endoderm (VE) resembling absorptive columnar epithelial cells. We performed comparative gene expression analysis on retinoic acid-differentiated and undifferentiated F9 cells and confirmed that markers of VE and intestinal epithelium were induced upon differentiation. The induction of these markers by retinoic acid was reduced in the presence of Wnt, although Wnt alone did not change their expression. This suggests that Wnt signaling inhibited the differentiation of F9 cells by altering gene expression. This inhibition was also reflected in the morphology of the F9 cells as their apical-basal polarity was disrupted by inclusion of Wnt during differentiation. These results support a model in which Wnt modulates the expression of genes required for normal terminal differentiation of the stem cells. However, it follows that progenitor cells must escape from Wnt signaling to attain the differentiated state. Accordingly, we found that differentiated F9 cells no longer responded to Wnt and that a blockade in Wnt signaling occurred upstream of Axin. Consistent with this, Wnt negative regulators, such as Dickkopf-1 and Disabled-2, were induced upon the differentiation of F9 cells. We propose that a similar system to produce Wnt inhibitors regulates homeostasis of certain stem cell compartments in vivo.  相似文献   

12.
Park MK  Lee M  Petersen OH 《Cell calcium》2004,35(4):367-379
Isolated single pancreatic acinar cells have long been used as a model for studying many kinds of signaling processes due to their structural and functional polarities, but without significant validation. In this study, we examined the morphological and functional changes of dissociated single pancreatic acinar cells. Acutely isolated single cells showed a collapsed membrane potential and a much reduced secretion of zymogen granules in response to acetylcholine (ACh) stimulation, whereas clustered cells showed a much more negative membrane potential and potent exocytotic secretion. The isolated single cells became vertically flattened due to the loss of supporting adhesions with nearby cells, and the granule-attached luminal membrane was severely reduced versus that of clustered cells. However, polarized Ca(2+) signals and mitochondrial localizations were relatively well preserved in the isolated single cells, in that Ca(2+) release by ACh commenced at the indented luminal membrane. In clusters, the Ca(2+) release site was closest to the lumen where more than three cells met or at the tips of conical regions of the luminal membrane. These findings suggest that the dissociated single pancreatic acinar cells preserve an intact Ca(2+) signaling machinery but alter in shape and have impaired exocytotic functions and resting membrane potentials.  相似文献   

13.
Hepatocytes and hepatic stellate cells play important roles in retinoid storage and metabolism. Hepatocytes process postprandial retinyl esters and are responsible for secretion of retinol bound to retinol-binding protein (RBP) to maintain plasma retinol levels. Stellate cells are the body's major cellular storage sites for retinoid. We have characterized and utilized an immortalized rat stellate cell line, HSC-T6 cells, to facilitate study of the cellular aspects of hepatic retinoid processing. For comparison, we also carried out parallel studies in Hepa-1 hepatocytes. Like activated primary stellate cells, HSC-T6 express myogenic and neural crest cytoskeletal filaments. HSC-T6 cells take up and esterify retinol in a time- and concentration-dependent manner. Supplementation of HSC-T6 culture medium with free fatty acids (up to 300 micrometer) does not affect retinol uptake but does enhance retinol esterification up to 10-fold. RT-PCR analysis indicates that HSC-T6 cells express all 6 retinoid nuclear receptors (RARalpha, -beta, -gamma, and RXRalpha, -beta, -gamma) and like primary stellate cells, HSC-T6 stellate cells express cellular retinol-binding protein, type I (CRBP) but fail to express either retinol-binding protein (RBP) or transthyretin (TTR). Addition of retinol (10(-8)-10(-5) m) or all-trans-retinoic acid (10(-10)-10(-6) m) rapidly up-regulates CRBP expression. Using RAR-specific agonists and antagonists and an RXR-specific agonist, we show that members of the RAR-receptor family modulate HSC-T6 CRBP expression.Thus, HSC-T6 cells display the same retinoid-related phenotype as primary stellate cells in culture and will be a useful tool for study of hepatic retinoid storage and metabolism.  相似文献   

14.
The teratocarcinoma stem cell line F9 has been widely used as a model for the analysis of molecular mechanisms associated with differentiation. This cell line has been considered to be nullipotent and able to differentiate into endodermal-like derivatives upon treatment with retinoic acid. Nevertheless, under definite culture conditions, F9 cells are able to differentiate into derivatives of all three germ layers. The F9 cells express characteristics of early mouse embryonal cells and possess all repression factors known to be present in cells of the early mouse embryogenesis. Induction of differentiation can be achieved not only by adding chemical agents to the culture medium but also by transfection of several oncogenic sequences. In somatic cell genetic experiments, immortalized, differentiated F9-like cells have been shown to express dominantly genes responsible for the appearance of the differentiated phenotype.  相似文献   

15.
16.
Neural crest cells (NCCs) are indispensable for the development of the cardiac outflow tract (OFT). Here, we show that mice lacking Smad4 in NCCs have persistent truncus arteriosus (PTA), severe OFT cushion hypoplasia, defective OFT elongation, and mispositioning of the OFT. Cardiac NCCs lacking Smad4 have increased apoptosis, apparently due to decreased Msx1/2 expression. This contributes to the reduction of NCCs in the OFT. Unexpectedly, mutants have MF20-expressing cardiomyocytes in the splanchnic mesoderm within the second heart field (SHF). This may result from abnormal differentiation or defective recruitment of differentiating SHF cells into OFT. Alterations in Bmp4, Sema3C, and PlexinA2 signals in the mutant OFT, SHF, and NCCs, disrupt the communications among different cell populations. Such disruptions can further affect the recruitment of NCCs into the OFT mesenchyme, causing severe OFT cushion hypoplasia and OFT septation failure. Furthermore, these NCCs have drastically reduced levels of Ids and MT1-MMP, affecting the positioning and remodeling of the OFT. Thus, Smad-signaling in cardiac NCCs has cell autonomous effects on their survival and non-cell autonomous effects on coordinating the movement of multiple cell lineages in the positioning and the remodeling of the OFT.  相似文献   

17.
Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area VI in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.  相似文献   

18.
19.
Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area Vl in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号