首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotic cells, the ubiquitin-proteasome pathway is the major mechanism for targeted degradation of proteins. We show that, in F9 cells and in transfected COS-1 cells, the nuclear retinoid receptors, retinoic acid receptor gamma2 (RARgamma2), RARalpha1, and retinoid X receptor alpha1 (RXRalpha1) are degraded in a retinoic acid-dependent manner through the ubiquitin-proteasome pathway. The degradation of RARgamma2 is entirely dependent on its phosphorylation and on its heterodimerization with liganded RXRalpha1. In contrast, RARalpha1 degradation can occur in the absence of heterodimerization, whereas it is inhibited by phosphorylation, and heterodimerization reverses that inhibition. RXRalpha1 degradation is also modulated by heterodimerization. Thus, each partner of RARgamma/RXRalpha and RARalpha/RXRalpha heterodimers modulates the degradation of the other. We conclude that the ligand-dependent degradation of RARs and RXRs by the ubiquitin-proteasome pathway, which is regulated by heterodimerization and by phosphorylation, could be important for the regulation of the magnitude and duration of the effects of retinoid signals.  相似文献   

2.
3.
The role of RAR alpha 1 and RAR gamma 2 AF-1 and AF-2 activation functions and of their phosphorylation was investigated during RA-induced primitive and parietal differentiation of F9 cells. We found that: (i) primitive endodermal differentiation requires RAR gamma 2, whereas parietal endodermal differentiation requires both RAR gamma 2 and RAR alpha 1, and in all cases AF-1 and AF-2 must synergize; (ii) primitive endodermal differentiation requires the proline-directed kinase site of RAR gamma 2-AF-1, whereas parietal endodermal differentiation additionally requires that of RAR alpha 1-AF-1; (iii) the cAMP-induced parietal endodermal differentiation also requires the protein kinase A site of RAR alpha-AF-2, but not that of RAR gamma; and (iv) the AF-1-AF-2 synergism and AF-1 phosphorylation site requirements for RA-responsive gene induction are promoter context-dependent. Thus, AF-1 and AF-2 of distinct RARs exert specific cellular and molecular functions in a cell-autonomous system mimicking physiological situations, and their phosphorylation by kinases belonging to two main signalling pathways is required to enable RARs to transduce the RA signal during F9 cell differentiation.  相似文献   

4.
Retinoic acid (RA), a derivative of vitamin A, is essential for normal patterning and neurogenesis during development. Until recently, studies have been focused on the physiological roles of RA receptors (RARs), one of the two types of nuclear receptors, whereas the functions of the other nuclear receptors, retinoid X receptors (RXRs), have not been explored. Accumulating evidence now suggests that RXRalpha is a critical receptor component mediating the effects of RA during embryonic development. In this study, we have examined the expression profiles of RXRalpha and RARs during the RA-induced neuronal differentiation in a human embryonal carcinoma cell line, NT2. Distinct expression profiles of RXRalpha, RARalpha, RARbeta, and RARgamma were observed following treatment with RA. In particular, we found that RA treatment resulted in a biphasic up-regulation of RXRalpha expression in NT2 cells. The induced RXRalpha was found to bind specifically to the retinoid X response element based on gel mobility retardation assays. Furthermore, immunocytochemical analysis revealed that RXRalpha expression could be localized to the somatoaxonal regions of the NT2 neurons, including the tyrosine hydroxylase- and vasoactive intestinal peptide-positive neurons. Taken together, our findings provide the first demonstration of the cellular localization and regulation of RXRalpha expression in NT2 cells and suggest that RXRalpha might play a crucial role in the cellular functions of human CNS neurons.  相似文献   

5.
6.
Retinoic acid (RA) inhibits adipocyte differentiation of 3T3-L1 preadipocytes but is effective only early in adipogenesis. RA prevented induction of the adipogenic factors PPARgamma and C/EBPalpha. Using receptor-specific ligands, we determined that the effects of RA were mediated by liganded RA receptors (RARs) rather than retinoid X receptors. Preadipocytes expressed primarily RARalpha and RARgamma; during adipocyte differentiation, RARalpha gene expression was nearly constant, whereas RARgamma1 mRNA and protein levels dramatically decreased. Ectopic expression of RARgamma1 extended the period of effectiveness of RA by 24 to 48h; RARalpha expression had a similar effect, suggesting functional redundancy of RAR subtypes. Remarkably, RA inhibited differentiation when added after PPARgamma1 and PPARgamma2 proteins had already been expressed and resulted in the loss of PPARgamma proteins from cells. By 72 to 96 h after the induction of differentiation, RA failed to prevent differentiation of even ectopic-RAR-expressing cells. Thus, the unresponsiveness of 3T3-L1 preadipocytes to RA after the induction of differentiation is initially due to the reduction in cellular RAR concentration rather than to the induction of PPARgamma. At later times cells continue along the differentiation pathway in a manner which is RA and RAR independent.  相似文献   

7.
8.
Retinoic acid (RA) is indispensable for morphogenesis and differentiation of several tissues, including the nervous system. The requirement of the RA receptor (RAR) isotypes alpha, beta, and gamma and the putative role of retinoid X receptor-(RXR) signaling in RA-induced neural differentiation, was analyzed. For this compound-selective retinoids and the murine embryonal carcinoma cell line PCC7, a model system for RA-dependent neural differentiation was used. The present paper shows that proliferating PCC7 cells primarily express RXRalpha and RARalpha, lower levels of RXRbeta, and barely detectable amounts of RARbeta, RARgamma, and RXRgamma. At receptor-selective concentrations, only a RARalpha or RARgamma agonist induced the typical tissue-like differentiation pattern consisting of neuronal and nonneuronal cells. Differentiation-associated processes, such as the down-regulation of Oct4, up-regulation of certain nuclear receptors and proneuronal genes, and the induction of neuronal markers could be triggered by receptor-selective concentrations of a RARalpha-, beta-, or gamma-selective agonist, although with distinct efficacy. The differences are only partially explained by the distinct RARalpha, beta, and gamma expression levels and the dissociation constants for the bound retinoids, suggesting differential requirement of RAR isotypes during the initial stages of neural differentiation of PCC7 cells.  相似文献   

9.
Retinoid X receptors and retinoid response in neuroblastoma cells   总被引:5,自引:0,他引:5  
Retinoic acid (RA) modulates differentiation and apoptosis of neural cells via RA receptors (RARs) and retinoid X receptors (RXRs). Neuroblastoma cells are potentially useful models for elucidating the molecular mechanisms of RA in neural cells, and responses to different isomers of RA have been interpreted in terms of differential homo- and heterodimerization of RXRs. The aim of this study was to identify the RXR types expressed in neuroblast and substrate-adherent neuroblastoma cells, and to study the participation of these RXRs in RAR heterodimers. RXRbeta was the predominant RXR type in N-type SH SY 5Y cells and S-type SH EP cells. Gel shift and supershift assays demonstrated that RARbeta and RARgamma predominantly heterodimerize with RXRbeta. In SH SY 5Y cells, RARgamma/RXRbeta was the predominant heterodimer binding to the DR5 RARE in the absence of 9-cis RA (9C), whereas the balance shifted in favor of RARbeta/RXRbeta in the presence of ligand. There was a marked difference between the N- and S-type neuroblastoma cells in retinoid receptor-DNA interactions, and this may underlie the differential effects of retinoids in these neuroblastoma cell types. There was no evidence to indicate that 9C functions via RXR homodimers in either SH SY 5Y or SH EP neuroblastoma cells. The results of this study suggest that interactions between retinoid receptors and other nuclear proteins may be critical determinants of retinoid responses in neural cells.  相似文献   

10.
Retinoids have pleiotropic effects on embryonic development and are essential for spermatogenesis in the adult, where they act via nuclear retinoid receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We used immunohistochemistry to examine the cellular localization of RARs and RXRs in the rat testis from Day 13.5 postconception (13.5 dpc) until Day 8 postpartum (8 dpp), and these findings were compared with those for immature and adult testes. RARalpha and RARbeta were detected in the interstitial tissue from 14.5 dpc, with intense staining in the gonocytes from 20. 5 dpc to 8 dpp. The nuclei of all cell types stained faintly for RARgamma from 8 dpp. Immunoreactivity for RXRalpha was intense in the gonocytes from 13.5 dpc and in the Leydig cells from 16.5 dpc, and persisted throughout the period studied. RXRbeta was always detected in the Leydig cells and during a short neonatal period in the gonocytes. RXRgamma gave a faint reaction in the nuclei of all cell types from 20.5 dpc. Unexpectedly, immunostaining for all the receptors tested, except RARgamma and RXRgamma, was detected in the cytoplasmic compartment of the cells of fetal and neonatal testes, while it was found in the nuclei in immature and adult testes. In cultures of dispersed testicular cells from 3 dpp pups, retinoic acid had a dose-dependent deleterious effect on the survival of the gonocytes and, to a lesser extent, of the somatic cells. These results suggest that retinoids act on the testicular development, especially on germ cells, via RARs and/or RXRs.  相似文献   

11.
Human acute promyelocytic leukemias (APLs) are associated with chromosomal translocations that replace the NH2 terminus of wild-type retinoic acid receptor (RAR) alpha with portions of the promyelocytic leukemia protein (PML) or promyelocytic leukemia zinc-finger protein (PLZF). The wild-type RARalpha readily forms heterodimers with the retinoid X receptors (RXRs), and these RAR/RXR heterodimers appear to be the principal mediators of retinoid signaling in normal cells. In contrast, PML-RARalpha and PLZF-RARa display an enhanced ability to form homodimers, and this enhanced homodimer formation is believed to contribute to the neoplastic properties of these chimeric oncoproteins. We report here that the DNA recognition specificity of the RXRalpha/RARa heterodimer, which is presumed to be the dominant receptor species in normal cells, differs from that of the PML-RARalpha and PLZF-RARalpha homodimers, which are thought to prevail in the oncogenic cell. We suggest that differences in target gene recognition by the normal and oncogenic RARalpha proteins may contribute to the leukemogenic phenotype.  相似文献   

12.
13.
14.
Retinoic acid (RA) induces the differentiation of F9 cells cultured as monolayers into primitive endodermal-like cells, whereas a combination of RA and cAMP leads to parietal endodermal differentiation. In RA receptor alpha-null F9 cells (RARalpha-/- cells), RA still efficiently triggers RARgamma-mediated primitive endodermal differentiation, but parietal endodermal differentiation is markedly delayed. To investigate the role of RARalpha1 activation functions AF-1 and AF-2 and of their phosphorylation sites during RA- and cAMP-induced parietal differentiation, cell lines reexpressing WT or mutated RARalpha1 were established in RARalpha-/- cells. We have found that the protein kinase A (PKA) phosphorylation site and the AF-2AD core (helix 12) of RARalpha1 are required for efficient parietal endodermal differentiation, whereas the AF-1 proline-directed kinase phosphorylation site is dispensible. Interestingly, deletion of the AF-1 activating domain (the A/B region), but not of the AF-2AD core, generates a dominant negative mutant that abrogates primitive endodermal differentiation when expressed in RARalpha-/- cells. We also show that the RARalpha AF-1 and AF-2 activation functions, but not their phosphorylation sites, are involved in the induction of RA-responsive genes in a differential promoter context-dependent manner.  相似文献   

15.
The F9 murine embryonal carcinoma (EC) cell line, a well established model system for the study of retinoic acid (RA)-induced differentiation, differentiates into cells resembling three types of extra-embryonic endoderm (primitive, parietal and visceral), depending on the culture conditions and RA concentration used. A number of previously identified genes are differentially expressed during this process and serve as markers for the different endodermal cell types. Differentiation is also accompanied by a decreased rate of proliferation and an apoptotic response. Using homologous recombination, we have disrupted both alleles of the retinoid X receptor (RXR) alpha gene in F9 cells to investigate its role in mediating these responses. The loss of RXRalpha expression impaired the morphological differentiation of F9 EC cells into primitive and parietal endoderm, but has little effect on visceral endodermal differentiation. Concomitantly the inducibility of most primitive and parietal endoderm differentiation-specific genes was impaired, while several genes upregulated during visceral endodermal differentiation were induced normally. We also demonstrate that RXRalpha is required for both the anti-proliferative and apoptotic responses in RA-treated F9 cells. Additionally, we provide further evidence that retinoic acid receptor (RAR)-RXR heterodimers are the functional units transducing the effects of retinoids in F9 cells.  相似文献   

16.
The ability of retinoids to induce growth inhibition associated with differentiation of diverse cell types makes them potent anti-cancer agents. We examined the effect of retinoic acid (RA) in cell lines derived from rhabdomyosarcoma (RMS), a malignant soft-tissue tumor committed to the myogenic lineage, but arrested prior to terminal differentiation. We showed that several RMS derived cell lines, including RD human rhabdomyosarcoma cells, are resistant to the growth-inhibitory and differentiation effects of RA. We established that this RA-resistance correlates with reduced expression and activity of RA-receptors in RD cells. We stably expressed either RARalpha, RARbeta, RARgamma, or RXRalpha expression vector into RD cells and found that only RARbeta or RARgamma induced a significant RA growth arrest without promoting differentiation indicating that changes in the amounts of RARs and RXRs are not sufficient to determine the RA myogenic response of rhabdomyosarcoma cells. Activation of RD cell differentiation by ectopic MRF4 expression enhanced RA-receptor activity and led to RA induction of differentiation. These studies demonstrate that RA-resistance of RD cells is linked to their lack of differentiation and suggest that the differentiation-promoting activity of RA requires factors other than RAR-RXR heterodimers.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号