首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vesicular stomatitis virus N and NS proteins form multiple complexes.   总被引:19,自引:17,他引:2       下载免费PDF全文
The vesicular stomatitis virus nucleocapsid protein, N, associated specifically with the viral phosphoprotein, NS, in an in vitro system which supported vesicular stomatitis virus RNA replication. Essentially all the N protein was found complexed with NS. In addition, multiple forms of the N-NS complex were detected which differed in their sedimentation properties and ratios of N to NS.  相似文献   

2.
We studied the effect pH had on the N-NS protein complex to determine its role in vesicular stomatitis virus (VSV) genome replication, as we had previously shown that VSV genome replication in vitro requires the interaction of the viral N and NS proteins into a 1:1 complex. A previous report showed that the growth of VSV in L cells was sensitive to the pH of the environment (M. Fiszman, J. B. Leaute, C. Chany, and M. Girard, J. Virol. 13:801-808, 1974). We hypothesized that low pH might disrupt the N-NS protein complex, and so we investigated the molecular events leading to inhibition of viral RNA replication in vitro from extracts that were prepared from VSV-infected cells incubated at pH 6.6. We found that viral genome RNA synthesis in vitro was reduced when infected cells were maintained at pH 6.6. Through immunoprecipitation analysis of the viral soluble protein pool, we found that a complex that usually exists between the N and NS proteins at pH 7.4 was altered in extracts from infected cells maintained at pH 6.6, and this was responsible for the observed effects on viral replication. The effect of low pH on the N-NS protein complex could not be abolished by increasing the concentration of the altered complex, indicating that the effects is more than simply a decrease in the level of the protein complex in the cell. Our data provide additional evidence that the 1:1 N-NS protein complex, and not the N protein alone, serves as the substrate for viral RNA replication in vivo.  相似文献   

3.
4.
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than ~170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced ~10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5′-TGGT-3′ motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.  相似文献   

5.
6.
7.
Bussetta C  Choi KH 《Biochemistry》2012,51(30):5921-5931
Dengue virus (DENV) nonstructural protein 5 (NS5) is composed of two globular domains separated by a 10-residue linker. The N-terminal domain participates in the synthesis of a mRNA cap 1 structure ((7Me)GpppA(2'OMe)) at the 5' end of the viral genome and possesses guanylyltransferase, guanine-N7-methyltransferase, and nucleoside-2'O-methyltransferase activities. The C-terminal domain is an RNA-dependent RNA polymerase responsible for viral RNA synthesis. Although crystal structures of the two isolated domains have been obtained, there are no structural data for full-length NS5. It is also unclear whether the two NS5 domains interact with each other to form a stable structure in which the relative orientation of the two domains is fixed. To investigate the structure and dynamics of DENV type 3 NS5 in solution, we conducted small-angle X-ray scattering experiments with the full-length protein. NS5 was found to be monomeric and well-folded under the conditions tested. The results of these experiments also suggest that NS5 adopts multiple conformations in solution, ranging from compact to more extended forms in which the two domains do not seem to interact with each other. We interpret the multiple conformations of NS5 observed in solution as resulting from weak interactions between the two NS5 domains and flexibility of the linker in the absence of other components of the replication complex.  相似文献   

8.
Membrane-bound polysomes from vesicular stomatitis virus (VSV)-infected HeLa cells synthesize predominantly three proteins in an in vitro protein synthesizing system. These three proteins have different molecular weights than the viral structural proteins, i.e., 115,000, 88,000, and 72,000. Addition of preincubated L or HeLa cell S10 or HeLa cell crude initiation factors stimulates amino acid incorporation and, furthermore, alters the pattern of proteins synthesized. Stimulated membrane-bound polysomes synthesize predominantly viral protein G and lesser amounts of N, NS, and M. In vitro synthesized proteins G and N are very similar to virion proteins G and N based on analysis of tryptic methionine-labeled peptides. Most methionine-labeled tryptic peptides of virion G protein contain no carbohydrate moieties, since about 90% of sugar-labeled peptides co-chromatograph with only about 10% of methionine-labeled peptides. Sucrose gradient analysis of the labeled RNA present in VSV-infected membrane-bound polysomes reveals a relative enrichment in a class of viral RNA sedimenting slightly faster than the total population of the 13 to 15S mRNA, as compared to a VSV-infected crude cytoplasmic extract. A number of proteins, other than the viral structural proteins, are synthesized in the cytoplasm of five lines of VSV-infected cells. One of these proteins has the same molecular weight as the major in vitro synthesized protein, P(88). In vitro synthesized protein P(88) does not appear to be a precursor of viral structural proteins G, N, or M based on pulse-chase experiments and tryptic peptide mapping. Nonstimulated membrane-bound polysomes from uninfected HeLa cells synthesize the same size distribution of proteins as nonstimulated VSV-infected membrane-bound polysomes.  相似文献   

9.
The NS1A protein of influenza A virus binds the cellular CPSF30 protein, thereby inhibiting the 3′-end processing of all cellular pre-mRNAs, including beta interferon pre-mRNA. X-ray crystallography identified the CPSF30-binding pocket on the influenza virus A/Udorn/72 (Ud) NS1A protein and the critical role of two hydrophobic NS1A amino acids outside the pocket, F103 and M106, in stabilizing the CPSF30-NS1A complex. Although the NS1A protein of the 1997 H5N1 influenza A/Hong Kong/483/97 (HK97) virus contains L (not F) at position 103 and I (not M) at position 106, it binds CPSF30 in vivo to a significant extent because cognate (HK97) internal proteins stabilize the CPSF30-NS1A complex in infected cells. Here we show that the cognate HK97 polymerase complex, containing the viral polymerase proteins (PB1, PB2, and PA) and the nucleocapsid protein (NP), is responsible for this stabilization. The noncognate Ud polymerase complex cannot carry out this stabilization, but it can stabilize CPSF30 binding to a mutated (F103L M106I) cognate Ud NS1A protein. These results suggested that the viral polymerase complex is an integral component of the CPSF30-NS1A protein complex in infected cells even when the cognate NS1A protein contains F103 and M106, and we show that this is indeed the case. Finally, we show that cognate PA protein and NP, but not cognate PB1 and PB2 proteins, are required for stabilizing the CPSF30-NS1A complex, indicating that the NS1A protein interacts primarily with its cognate PA protein and NP in a complex that includes the cellular CPSF30 protein.  相似文献   

10.
Influenza A virus (H1N1), a genetic reassortment of endemic strains of human, avian and swine flu, has crossed species barrier to human and apparently acquired the capability of human to human transmission. Some strains of H5N1 subtype are highly virulent because NS1 protein inhibits antiviral interferon α/β production. Another protein NS2 mediates export of viral ribonucleoprotein from nucleus to the cytoplasm through export signal. In this paper, we have studied structure-function relationships of these proteins of H1N1 subtype and have determined the cause of their pathogenicity. Our results showed that non-conservative mutations slightly stabilized or destabi- lized structural domains of NS1 or NS1-dsRNA complex, hence slightly increased or decreased the function of NS1 protein and consequently enhanced or reduced the pathogenicity of the H1N1 virus. NS2 protein of different strains carried non-conservative mutations in different domains, resulting in slight loss of function. These mutations slightly decreased the pathogenicity of the virus. Thus, the results confirm the structure-function relationships of these viral proteins.  相似文献   

11.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

12.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

13.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses(NS2BNS3) form an endoplasmic reticulum(ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

14.
Structural Roles of Polyoma Virus Proteins   总被引:16,自引:14,他引:2       下载免费PDF全文
The superhelical, closed circular form of polyoma deoxyribonucleic acid (DNA) (Co 1) is bound in a 25S DNA-protein complex to the viral histone-like proteins after alkaline disruption of the virion. Nicked viral DNA or linear DNA are largely free of protein. Most of the viral protein disruption is in the form of capsomeres, sedimenting principally at 10S and 7S. Despite the relatively constant ratio of 10S to 7S material in many preparations, (1:5.5 to 1:6.0, respectively), the two classes of capsomeres are indistinguishable by electron microscopy and contain only P(2), P(3), and P(4) in molar ratios of approximately 5:1:1 or 6:1:1, respectively. Material with sedimentation rates of approximately 1 to 3S is enriched for P(5) and contains small amounts of P(2), P(3), and P(4). During the in vitro reassembly of DNA-free, shell-like particles from disrupted virus, proteins P(1), P(2), P(3), P(4), and P(7) are reincorporated efficiently, whereas P(5) and P(6) are not. The presence in empty reassembled particles of histone-like protein, expecially P(7), implies that at least this one of the minor protein components of the virion may participate in protein-protein interactions with other components of the capsid.  相似文献   

15.
小麦丛矮病毒是在中国发现的一种植物弹状病毒 ,病毒基因组是由一条单链负链RNA组成并编码 5种病毒结构蛋白质 :表面糖蛋白G、膜基质蛋白M、核衣壳蛋白N、大蛋白L和所谓非结构蛋白NS。后来的研究证明 ,在弹状病毒的模式病毒———水泡性口膜炎病毒中 ,NS蛋白也是一种结构蛋白 ,而且在成熟的病毒粒子中以各种磷酸化形式存在 ,并且证明NS的磷酸化和去磷酸化对病毒基因组的转录和复制的调控起重要的作用。用体外磷酸化方法证明 ,结合于小麦丛矮病毒的核衣壳上的NS蛋白可以被磷酸化 ;同时也证明 ,从大肠杆菌中表达的小麦丛矮病毒的NS蛋白 ,只有在病毒核衣壳存在下才可以体外被磷酸化 ;从而证明 ,小麦丛矮病毒或植物弹状病毒的NS蛋白也是一种磷酸化蛋白质 ,在成熟病毒粒子中可能存在磷酸化和非磷酸化两种形式。病毒的L蛋白除以前报道的具有RNA聚合酶活力外 ,也具有蛋白激酶的活力。  相似文献   

16.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

17.
C G Shin  R M Snapka 《Biochemistry》1990,29(49):10934-10939
Exposure of infected CV-1 cells to specific type I and type II topoisomerase poisons caused strong protein association with distinct subsets of simian virus 40 (SV40) DNA replication intermediates. On the basis of the known specificity and mechanisms of action of these drugs, the proteins involved are assumed to be the respective topoisomerases. Camptothecin, a topoisomerase I poison, caused strong protein association with form II (relaxed circular) and form III (linear) viral genomes and replication intermediates having broken DNA replication forks but not with form I (superhelical) viral DNA or normal late replication intermediates which were present. In contrast, type II topoisomerase poisons caused completely replicated forms and late viral replication forms to be tightly bound to protein--some to a greater extent than others. Different type II topoisomerase inhibitors caused distinctive patterns of protein association with the replication intermediates present. Both intercalating and nonintercalating type II topoisomerase poisons caused a small amount of form I (superhelical) SV40 DNA to be protein-associated in vivo. The protein complex with form I viral DNA was entirely drug-dependent and strong, but apparently noncovalent. The protein associated with form I DNA may represent a drug-stabilized "topological complex" between type II topoisomerase and SV40 DNA.  相似文献   

18.
19.
The hepatitis C virus encodes a single polyprotein that is processed by host and viral proteases to yield at least 10 mature viral proteins. The nonstructural (NS) protein 5A is a phosphoprotein, and experimental data indicate that the phosphorylation state of NS5A is important for the outcome of viral RNA replication. We were able to identify kinase inhibitors that specifically inhibit the formation of the hyperphosphorylated form of NS5A (p58) in cells. These kinase inhibitors were used for inhibitor affinity chromatography in order to identify the cellular targets of these compounds. The kinases casein kinase I (CKI), p38 MAPK, CIT (Citron Rho-interacting kinase), GAK, JNK2, PKA, RSK1/2, and RIPK2 were identified in the high affinity binding fractions of two NS5A hyperphosphorylation inhibitors (NS5A-p58-i). Even though these kinases are targets of the NS5A-p58-i, the only kinase showing an effect on NS5A hyperphosphorylation was confirmed to be CKI-alpha. Although this finding does not exclude the possibility that other kinase(s) might be involved in basal or regulatory phosphorylation of NS5A, we show here that NS5A is a direct substrate of CKI-alpha. Moreover, in vitro phosphorylation of NS5A by CKI-alpha resulted for the first time in the production of basal and hyperphosphorylated forms resembling those produced in cells. In vitro kinase reactions performed with NS5A peptides show that Ser-2204 is a preferred substrate residue for CKI-alpha after pre-phosphorylation of Ser-2201.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号