首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiation of 2-nitrobenzyl alcohol (1, R = H) and 1-(2-nitrophenyl)ethanol (1, R = Me) in various solvents yields 2-nitroso benzaldehyde (4, R = H) and 2-nitroso acetophenone (4 R = Me), respectively, with quantum yields of about 60%. The mechanism of this reaction, known since 1918, was investigated using laser flash photolysis, time-resolved infrared spectroscopy (TRIR), and 18O-labeling experiments. The primary aci-nitro photoproducts 2 react by two competing paths. The balance between the two depends on the reaction medium. Reaction via hydrated nitroso compounds 3 formed by proton transfer prevails in aprotic solvents and in aqueous acid and base. In water, pH 3-8, the classical mechanism of cyclization to benzisoxazolidine intermediates 5, followed by ring opening to carbonyl hydrates 6, predominates. The transient intermediates 3 and 6 were identified by TRIR. Potential energy surfaces for these reactions were mapped by density functional calculations.  相似文献   

2.
Photolysis of alpha-carboxy-2-nitrobenzyl (CNB) caged compounds, studied here by time-resolved IR and UV spectroscopy, involves at least two pathways. In one, a conventional 2-nitrobenzyl type rearrangement takes place to release the photoprotected species via rapid decay of an aci-nitro intermediate. The alpha-carboxylate moiety of the CNB group is retained and the final by-product from this pathway is 2-nitrosophenylglyoxylate. Direct measurements of product formation confirmed that release via this pathway is faster for CNB-caged compounds than for related caged compounds without an alpha-carboxylate substituent and a rationale for the faster release rate is proposed. In a second pathway, photodecarboxylation of the starting material occurs: this pathway leads only to a slow, minor release of the photoprotected species. The extent to which the latter pathway contributes is affected by the nature of buffer salts in the irradiated solution. It was more prominent in an amine-based buffer (MOPS) than in phosphate buffer.  相似文献   

3.
The UVA-absorbing photoproduct resulting from the oxidation of the sulfur atom and of the side chain nitrogen of the phototoxic drug cyamemazine (CMZ) (2-cyano-10-(3-[dimethylamino]-2 methylpropyl)-phenothiazine) is a potent photodynamic photosensitizer. The photophysical and photochemical properties of this photoproduct (P) (2-cyano-10-(3-[dimethylamino, N-oxide]-2-methylpropyl)-5-oxide-phenothiazine)) have been investigated in neutral buffered aqueous solutions and in ethanol and compared to those of the sulfoxide (S) (2-cyano-10-(3-[dimethylamino]-2 methylpropyl)-5-oxide-phenothiazine), a CMZ oxidation product of cells. The fluorescence quantum yield (PhiF) of P is 0.25 and 0.21 in pH 7 phosphate buffer and ethanol, respectively. By contrast, S (PhiF = 0.14 in buffer) is practically unfluorescent in alcohol. In buffer, the fluorescence lifetimes of P and S are 10.5 and 11.8 ns, respectively. The transient absorbance of the first excited triplet state (3P1) with a characteristic absorption band peaking at 660 nm (epsilon = 5,300 M(-1) cm(-1)) has been observed by 355 nm laser flash spectroscopy of deaerated phosphate buffer or ethanol solutions. In buffer, the 3P1 lifetime is 0.5 micros. The energy transfer which occurs from the 3P1 to naproxen suggests that the 3P1 energy is greater than 62 kcal mol(-1). Triplet quenching by dioxygen occurs at rate 2.3 x 10(9) M(-1) s(-1). With the triplet benzophenone as actinometer, the 3P1 formation quantum yield is found to be 0. 40 in buffer. The 3P1 state is quenched by ethanol and 2-propanol with bimolecular reaction rate constants of 1.6 and 2.4 x 10(6) M(-1) s(-1), respectively. In buffer, P and S triplet states react with tryptophan, indole and cysteine at rate constants of the order of 10(9) M(-1) s(-1) for Trp and indole and 10(8) M(-1) s(-1) for Cys.  相似文献   

4.
A previous report disclosed the presence of benzodioxan and bicyclo[3.2.1]octanoid neolignans in the benzene extract of the trunk wood of an Amazonian Aniba (Lauraceae) species. The chloroform extract of the same material contains additionally two new benzodioxan neolignans [rel-(7S,8R)-Δ8′-7-hydroxy-3,4,5,5′-tetramethoxy-7.0.3′,8.0.4′-neolignan; rel-(7R,8R)-Δ7′-3,4,5,5′-tetramethoxy-9′-oxo-7.0.3′,8.0.4′-neolignan], two new bicyclo[3.2.1]-octanoid neolignans [(7R,8S,1′S,2′S,3′S,4′R)-Δ8′-2′,4′-dihydroxy-3,3′-dimethoxy-4,5-methylenedioxy-1′,2′,3′,4′,5′,6′-hexahydro-5′-oxo-7.3′,8.1′-neolignan; (7R,8S,1′R,2′S,3′S)-Δ8′-2′-hydroxy-3,3′,5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-4′-oxo-7.3′,8.1′-neolignan] and a hydrobenzofuranoid neolignan [(7S,8R,1′S,5′S)-Δ8′-3,3′,5′-tri-methoxy-4,5-methylenedioxy-1′,4′,5′,6′-tetrahydro-4′-oxo-7.0.2′,8.1-neolignan].  相似文献   

5.
Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT.   总被引:7,自引:2,他引:5       下载免费PDF全文
A strain of Pseudomonas spp. was isolated from nitrobenzene-contaminated soil on 4-nitrotoluene as the sole source of carbon, nitrogen, and energy. The organism also grew on 4-nitrobenzaldehyde, and 4-nitrobenzoate. 4-Nitrobenzoate and ammonia were detected in the culture fluid of glucose-grown cells after induction with 4-nitrotoluene. Washed suspensions of 4-nitrotoluene- or 4-nitrobenzoate-grown cells oxidized 4-nitrotoluene, 4-nitrobenzaldehyde, 4-nitrobenzyl alcohol, and protocatechuate. Extracts from induced cells contained 4-nitrobenzaldehyde dehydrogenase, 4-nitrobenzyl alcohol dehydrogenase, and protocatechuate 4,5-dioxygenase activities. Under anaerobic conditions, cell extracts converted 4-nitrobenzoate or 4-hydroxylaminobenzoate to protocatechuate. Conversion of 4-nitrobenzoate to protocatechuate required NADPH. These results indicate that 4-nitrotoluene was degraded by an initial oxidation of the methyl group to form 4-nitrobenzyl alcohol, which was converted to 4-nitrobenzoate via 4-nitrobenzaldehyde. The 4-nitrobenzoate was reduced to 4-hydroxylaminobenzoate, which was converted to protocatechuate. A protocatechuate 4,5-dioxygenase catalyzed meta-ring fission of the protocatechuate. The detection of 4-nitrobenzaldehyde and 4-nitrobenzyl alcohol dehydrogenase and 4-nitrotoluene oxygenase activities in 4-nitrobenzoate-grown cells suggests that 4-nitrobenzoate is an inducer of the 4-nitrotoluene degradative pathway.  相似文献   

6.
Triplet exciton (TE) formation pathways are systematically investigated in prototype bulk heterojunction (BHJ) “super yellow” poly(p‐phenylene vinylene) (SY‐PPV) solar cell devices with varying fullerene compositions using complementary optoelectrical and electrically detected magnetic resonance (EDMR) spectroscopies. It is shown that EDMR spectroscopy allows the unambiguous demonstration of fullerene triplet production in BHJ polymer:fullerene solar cells. EDMR triplet detection under selective photoexcitation of each blend component and of the interfacial charge transfer (CT) state reveals that low lying fullerene TEs are produced by direct intersystem crossing from singlet excitons (SEs). The direct CT‐TE recombination pathway, although energetically feasible, is kinetically suppressed in these devices. However, high energy CT states in the CT manifold can contribute to the population of the fullerene triplet state via a direct CT‐SE conversion. This undesirable energetic alignment could be one of the causes for the severe reduction in photocurrent observed when the open‐circuit voltage of polymer:fullerene solar cells is pushed to 1.0 V or beyond.  相似文献   

7.
His-32 of bovine or human alpha-lactalbumin reacts with the tryptophan reagent 2-hydroxy-5-nitrobenzyl bromide at pH 7. The reaction depends on the native conformation of the alpha-lactalbumin molecule and it is restricted to position 1 of the imidazole nucleus. The synthesis and characterization of 1-(2-hydroxy-5-nitrobenzyl)-histidine, 3-(2-hydroxy-5-nitrobenzyl)-histidine and 1,3-bis(2-hydroxy-5-nitrobenzyl)-histidine are described.  相似文献   

8.
Elementary reactions have been studied quantitatively in the complex overall process catalyzed by horseradish peroxidase whereby isobutyraldehyde and molecular oxygen react to form triplet state acetone and formic acid. The rate constant for the reaction of the enol form of isobutyraldehyde with compound I of peroxidase is (8 +/- 1) X 10(6) M-1 s-1 and with compound II (1.3 +/- 0.3) X 10(6) M-1 s-1. Neither the enolate anion nor the keto form is reactive. The reactivity of enols with peroxidase parallels that of unionized phenols and a common mechanism is proposed. The overall catalyzed reaction of isobutyraldehyde and oxygen consists of an initial burst followed by a steady state phase. The burst is caused by the following sequence: 1) an initial high yield of compound I is formed from reaction of native enzyme with the autoxidation product of isobutyraldehyde, a peracid and 2) compound I rapidly depletes the equilibrium pool of enol which is present. After this burst a steady state phase is observed in which the rate-limiting step is the conversion of the keto to the enol form of the aldehyde catalyzed by phosphate buffer. The rate constant for the keto form reacting with phosphate is (8.7 +/- 0.6) X 10(-5) M-1 s-1. All constants were measured in dilute aqueous ethanol at 35 degrees C, pH 7.4, and ionic strength 0.67 M. Both the initial burst of light and the steady state emission from triplet acetone can be observed with the naked eye. Since the magnitude of the burst is a measure of the equilibrium amount of enol, the keto-enol equilibrium constant is readily calculated and hence also the rate constant for conversion of enol to keto. The keto-enol equilibrium constant is unaffected by phosphate which therefore acts as a true catalyst.  相似文献   

9.
The mode of formation of the quinoxaline versus 2[1H]-quinoxalinone rings by the reaction of o-diamines with dehydro-D-erythorbic acid has been investigated. The study was carried out by using one and two molar equivalents of 1,2-diamino-4,5-dimethylbenzene (3b) to give 6,7-dimethyl-3-(1-oxo-D-erythro-2,3,4-trihydroxybutyl)-2[1H]-quino xalinone (4b) and 2-(2-amino-4,5-dimethylphenylcarbamoyl)-3-(D-erythro-glycerol-1-yl )- 6,7-dimethylquinoxaline (6), respectively. The former product exists predominantly as the two furanosyl anomers. Sequential reaction of 4a with 3b has been studied, and the location of each diamine in the product was deduced by using 1H-n.m.r. spectroscopy. A mechanism for the reaction is proposed. Acetate and acetal derivatives of the compound are prepared.  相似文献   

10.
The synthesis and conformational studies of (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-allo-inositol and (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-6-O-methyl-allo-inositol are described. Solid state conformations of the title compounds have been studied by solving their X-ray crystal structures. The inositol ring in both the compounds deviate considerably from the ideal chair conformation to flattened chair conformation in the solid state. Their conformations in solution were studied by the use of 1H NMR spectroscopy. These conformational analyses revealed that the title compounds adopt similar conformations in solid and solution states irrespective of the solvent polarity.  相似文献   

11.
Effects of intra- and intermolecular hydrogen-bonds on the photophysical properties of 2'-aminoacetophenone derivatives (X-C6H4-COCH3) having a substituted amino group (X) with different hydrogen-bonding ability to the carbonyl oxygen (X: NH2(AAP), NHCH3(MAAP), N(CH3)2(DMAAP), NHCOCH3(AAAP), NHCOCF3(TFAAP)) are investigated by means of steady-state and time-resolved fluorescence spectroscopy and time-resolved thermal lensing. Based on the photophysical parameters obtained in aprotic solvents with different polarity and protic solvents with different hydrogen-bonding ability, the characteristic photophysical behavior of the 2'-aminoacetophenone derivatives is discussed in terms of hydrogen-bonding and n,pi*-pi,pi* vibronic coupling. The dominant deactivation process of AAP and MAAP in nonpolar aprotic solvents is the extremely fast internal conversion (k(ic)= 1.0 x 10(11) s(-1) for AAP and 3.9 x 10(10) s(-1) for MAAP in n-hexane). The internal conversion rates of both compounds decrease markedly with increasing solvent polarity, suggesting that vibronic interactions between close-lying S1(pi,pi*) and S2(n,pi*) states lead to the large increase in the non-radiative decay rate of the lowest excited singlet state. It is also suggested that for MAAP, which has a stronger hydrogen-bond as compared to AAP, an intramolecular hydrogen-bonding induced deactivation is involved in the dissipation of the S1 state. For DMAAP, which cannot possess an intramolecular hydrogen-bond, the primary relaxation mechanism of the S1 state in nonpolar aprotic solvents is the intersystem crossing to the triplet state, whereas in protic solvents very efficient internal conversion due to intermolecular hydrogen-bonding is induced. In contrast, the fluorescence spectra of AAAP and TFAAP, which have an amino group with a much stronger hydrogen-bonding ability, give strongly Stokes-shifted fluorescence, indicating that these compounds undergo excited-state intramolecular proton transfer reaction upon electronic excitation.  相似文献   

12.
In aqueous solution, in the presence of ammonium chloride, N1-substituted 2-nitroimidazoles are readily reduced to the corresponding hydroxylamines. In air, under neutral conditions, analogous to the reactions of aromatic hydroxylamines, 2-hydroxylaminoimidazoles are converted to the azoxy derivatives via a base-catalyzed condensation reaction between the hydroxylamine and its oxidation product, the nitroso derivative. In nitrogen, rearrangement to form the 2-amino-4(5)hydroxyimidazole derivative followed by addition of water across the C4-C5 double bond to yield isomers of a 4,5-dihydro-4,5-dihydroxy derivative appears to be a major reaction. 2-hydroxylaminoimidazoles undergo a complex series of reactions with glutathione. The initial reaction is the formation of a labile conjugate involving an N-S-linkage. Subsequently in the presence of excess GSH, under neutral conditions, two stable conjugates identified as 2-amino-4-S-glutathionyl- and 2-amino-5-S-glutathionyl imidazoles are formed. Nucleophilic attack by GSH on the imidazole ring of a nitrenium ion is postulated as the initial step in the formation of the stable GSH conjugates as well as the 2-amino-4,5-dihydro dihydroxy derivative. The results provide a molecular mechanism for many of the biological effects of N1-substituted 2-nitroimidazoles in hypoxic mammalian cells.  相似文献   

13.
Some 5-methyl analogues (14a-e) of the non-competitive AMPA antagonists 3-acylated 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-4,5-dihydro-3H-2,3-benzodi azepines (2,3) have been synthesized. Generally they show diminished or low biological activity but two derivatives (14a,b) reveal effects comparable to those of GYKI 52466 (1), the prototype non competitive AMPA antagonist.  相似文献   

14.
The binding to hemoglobin of synthetic 2-hydroxyamino-6-methyldipyrido[1,2-a: 3',2'-d] imidazole from the carcinogenic product of L-glutamic acid pyrolysis 2-amino-6-methyldipyrido[1,2-a: 3',2'-d] imidazole were investigated in vitro. The hydroxylamine required oxidation to its nitroso derivative to bind to rat hemoglobin through thiol groups. Oxidation of the hydroxylamine to the nitroso form was found to be enhanced by oxyhemoglobin and superoxide dismutase at pH 7.4 under aerobic conditions. Since these conditions might also enhance this oxidation in vivo, the conversion of the DNA-reactive arylhydroxylamines to the DNA-non-reactive nitroso compounds and their subsequent binding to highly abundant thiol groups of proteins could be considered as a process for detoxification of toxic arylhydroxylamines.  相似文献   

15.
We have built a fluorescence correlation spectroscopy (FCS) microscope for ultraviolet excitation (280-300 nm) and emission. With UV excitation the fluorescence of 'natural fluorophores' such as the modified nucleotide 2-aminopurine can be analyzed. The sensitivity of a natural fluorophore toward conformational changes can reveal dynamics in biomolecules. UV-FCS is well suited for detection of intensity fluctuations related to such conformational dynamics. Here we show UV-FCS measured on p-Quarterphenyl and on 2-aminopurine (2-AP). The triplet state rate constants and the excitation cross section for 2-AP were estimated to k23 = 1 x 10(6) s(-1), k31 = 3 x 10(5) s(-1), and sigma(exc) = 2 x 10(-17) cm2.  相似文献   

16.
The synthesis and characterization of a new photolabile precursor of glycine (caged glycine) is described. The alpha-carboxyl group of glycine is covalently coupled to the alpha-carboxy-2-nitrobenzyl (alphaCNB) protecting group. Photolysis of the caged glycine with UV light produces free glycine. At 308 nm, the compound photolyzes with a quantum yield of 0.38. The absorption spectrum and the pH dependence of a transient absorption produced after laser-flash illumination are typical for aci-nitro intermediates of alphaCNB-protected compounds. The time constant for the major component of the aci-nitro intermediate decay ( approximately 84% of the total aci-nitro absorbance) was determined to be 7 micros at physiological pH. A minor component ( approximately 16%) decays with a rate constant of 170 micros. The compound does not activate or inhibit the alpha(1)-homomeric glycine receptor transiently expressed in HEK293 cells. After photolysis with a 10 ns pulse of 325 nm laser light, the glycine released from the caged compound activates glycine-mediated whole-cell currents in the same cells. The rise of these currents can be measured in a time-resolved fashion and occurs on a millisecond to sub-millisecond time scale. It can be described with a single-exponential function over >85% of the total current. The rate constant of the current rise is about 2 orders of magnitude slower than the rate constant of caged glycine photolysis. Thermal hydrolysis of the alphaCNB-caged glycine takes place with a half-life of 15.6 h at physiological pH. The new caged glycine is the first in a series of photoprotected glycine derivatives that has the required properties for use with chemical kinetic methods for investigation of glycine-activated cell surface receptors. Photolysis is rapid and efficient with respect to the receptor reactions to be studied; hydrolysis in aqueous solution is sufficiently slow, and the compound is biologically inert. It will, therefore, be a useful tool for investigation of the processes leading to channel opening of glycine receptor channels and the effects of mutations of the glycine receptor and of inhibitors on these processes.  相似文献   

17.
The synthesis of O-(4,5-dimethoxy-2-nitrobenzyl)serine has been accomplished by treatment of an FMOC-aziridinecarboxylate with nitroveratryl alcohol followed by hydrolysis. Irradiation with a Pyrex-filtered 450W Hanovia lamp releases serine with a half-life of 4.4 min. o-Nitrobenzyl serinate is prepared by direct esterification. Vycor-filtered irradiation releases serine with a half-life of 6.9 min.  相似文献   

18.
《Phytochemistry》1987,26(4):1155-1158
The stem bark of Ocotea veraguensis has yielded nine neolignans of which five appear to be novel. The new neolignans, which were identified on the basis of spectral characteristics, are* (7S,8R,1′S,2′S,3′R,4′S)-Δ8′-2′,4′-dihydroxy-3,3′5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-7.3′,8.1′-neolignan, (7S,8R,1′S,3′S,4′S)-Δ8′-4,4'-dihydroxy-3,3′,5′-trimethoxy-1′,2′,3′,4′-tetrahydro-2′-oxo-7.3′,8.1′-neolignan, (7S,8S,1′R)-Δ8′-3′,5′-dimethoxy-3,4-methylenedioxy-1′,4′-dihydro-4′-oxo-7.0.2′,8.1′-neolignan, (7S,8S,1′R )-Δ8′-1′-methoxy-3,4-methylenedioxy-1′,6′-dihydro-6′-oxo-7.0.4′,8.3′-neolignan and (7S,8S)-Δ8′-2′,6′-dimethoxy-3,4-methylenedioxy-7.0.3′,8.4′,1′.0.7′-neolignan.  相似文献   

19.
The photoreduction of 1,4-benzoquinone (BQ), 1,4-naphthoquinone (NQ), 9,10-anthraquinone (AQ) and several derivatives, e.g. dimethylBQ, trimethylBQ, duroquinone, bromoNQ, methoxyNQ, methylAQ and dimethylAQ in acetonitrile-water by ascorbate was studied by time-resolved UV-vis spectroscopy using 20 ns laser pulses at 308 nm and continuous 254 nm irradiation. The semiquinone radical (*QH/Q*(-)) is formed after H-atom transfer from ascorbate to the quinone triplet state. The rate constant for quenching is k(q)=(2-9) x 10(9) M(-1) s(-1). Termination of the radicals takes place in the micros-ms range. The results are compared with those initiated by electron transfer from DABCO under similar conditions, where the k(q) values are similar, but the termination of Q*(-) takes place by electron back transfer not yielding hydroquinones. Specific properties of the quinone triplet state, e.g. self-quenching, nucleophilic water addition and the effects of structure are discussed.  相似文献   

20.
The chemical synthesis and incorporation of the phosphoramidite derivatives of 2?′-O-photocaged ribonucleosides (A, C, G and U) with o-nitrobenzyl, α-methyl-o-nitrobenzyl or 4,5-dimethoxy-2-nitrobenzyl group into oligoribonucleotides are described. The efficiency of UV irradiated uncaging of these 2′-O-photocaged oligoribonucleotides was found in the order of α-methyl-o-nitrobenzyl < 4,5-dimethoxy-2-nitrobenzyl < 2′-O-o-nitrobenzyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号