首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation.  相似文献   

2.
It is now quite well accepted that charge separation in PS2 reaction centers starts predominantly from the accessory chlorophyll BA and not from the special pair P680. To identify spectral signatures of BA, and to further clarify the process of primary charge separation, we compared the femtosecond-infrared pump-probe spectra of the wild-type (WT) PS2 core complex from the cyanobacterium Synechocystis sp. PCC 6803 with those of two mutants in which the histidine residue axially coordinated to PB (D2-His197) has been changed to Ala or Gln. By analogy with the structure of purple bacterial reaction centers, the mutated histidine is proposed to be indirectly H-bonded to the C9O carbonyl of the putative primary donor BA through a water molecule. The constructed mutations are thus expected to perturb the vibrational properties of BA by modifying the hydrogen bond strength, possibly by displacing the H-bonded water molecule, and to modify the electronic properties and the charge localization of the oxidized donor . Analysis of steady-state light-induced Fourier transform infrared difference spectra of the WT and the D2-His197Ala mutant indeed shows that a modification of the axially coordinating ligand to PB induces a charge redistribution of In addition, a comparison of the time-resolved visible/midinfrared spectra of the WT and mutants has allowed us to investigate the changes in the kinetics of primary charge separation induced by the mutations and to propose a band assignment identifying the characteristic vibrations of BA.  相似文献   

3.
The illumination of oxygen-evolving PSII core complexes at very low temperatures in spectral regions not expected to excite P680 leads to charge separation in a majority of centers. The fraction of centers photoconverted as a function of the number of absorbed photons per PSII core is determined by quantification of electrochromic shifts on Pheo(D1). These shifts arise from the formation of metastable plastoquinone anion (Q(A)(-)) configurations. Spectra of concentrated samples identify absorption in the 700-730 nm range. This is well beyond absorption attributable to CP47. Spectra in the 690-730 nm region can be described by the 'trap' CP47 absorption at 689 nm, with dipole strength of approximately 1 chlorophyll a (chl a), partially overlapping a broader feature near 705 nm with a dipole strength of approximately 0.15 chl a. This absorption strength in the 700-730 nm region falls by 40% in the photoconverted configuration. Quantum efficiencies of photoconversion following illumination in the 690-700 nm region are similar to those obtained with green illumination but fall significantly in the 700-730 nm range. Two possible assignments of the long-wavelength absorption are considered. Firstly, as a low intensity component of strongly exciton-coupled reaction center chlorin excitations and secondly as a nominally 'dark' charge-transfer excitation of the 'special pair' P(D1)-P(D2). The opportunities offered by these observations towards the understanding of the nature of P680 and PSII fluorescence are discussed.  相似文献   

4.
5.
Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (E m = ?0.47 V, all vs. NHE, at pH 6), quinones (?0.12 V), and the manganese (Mn) cluster (E m = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The ?0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the ?0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.  相似文献   

6.
Noguchi T  Sugiura M 《Biochemistry》2000,39(36):10943-10949
The vibrations of a water molecule in the water-oxidizing complex (WOC) of photosystem II were detected for the first time using Fourier transform infrared (FTIR) spectroscopy. In a flash-induced FTIR difference spectrum upon the S(1)-to-S(2) transition, a pair of positive and negative bands was observed at 3618 and 3585 cm(-1), respectively, and both bands exhibited downshifts by 12 cm(-1) upon replacement of H(2)(16)O by H(2)(18)O. Upon D(2)O substitution, the bands largely shifted down to 2681 and 2652 cm(-1). These observations indicate that the bands at 3618 and 3585 cm(-1) arise from the O-H stretching vibrations of a water molecule, probably substrate water, coupled to the Mn cluster in the S(2) and S(1) states, respectively. The band frequencies indicate that the O-H group forms a weak H-bond and this H-bonding becomes weaker upon S(2) formation. Intramolecular coupling with the other O-H vibration of this water molecule was studied by a decoupling experiment using a H(2)O/D(2)O (1:1) mixture. The downshifts by decoupling were estimated to be 4 and 12 cm(-1) for the 3618 (S(2)) and 3585 cm(-1) (S(1)) bands, both of which were much smaller than 52 cm(-1) of water in vapor, indicating that the observed water has a considerably asymmetric structure; i.e., one of the O-H groups is weakly and the other is strongly H-bonded. The smaller coupling in the S(2) than the S(1) state means that this H-bonding asymmetry becomes more prominent upon S(2) formation. Such a structural change may facilitate the proton release reaction that takes place in the later step by lowering the potential barrier. The present study showed that FTIR detection of the O-H vibrations is a useful and promising method to directly monitor the chemical reactions of substrate water and clarify the molecular mechanism of photosynthetic water oxidation.  相似文献   

7.
Our current understanding of the PSII reaction centre owes a great deal to comparisons to the simpler and better understood, purple bacterial reaction centre. Here we provide an overview of the similarities with a focus on charge separation and the electron acceptors. We go on to discuss some of the main differences between the two kinds of reaction centres that have been highlighted by the improving knowledge of PSII. We attempt to relate these differences to functional requirements of water splitting. Some are directly associated with that function, e.g. high oxidation potentials, while others are associated with regulation and protection against photodamage. The protective and regulatory functions are associated with the harsh chemistry performed during its normal function but also with requirements of the enzyme while it is undergoing assembly and repair. Key aspects of PSII reaction centre evolution are also addressed. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

8.
9.
The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.  相似文献   

10.
The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface.  相似文献   

11.
运用稳态、瞬态荧光光谱技术对光系统Ⅱ核心复合物的能量传递动力学进行研究。分别用436nm光脉冲激发叶绿素a分子、451nm光激发叶绿素a和β-胡萝卜素分子、473和481nm光激发β-胡萝卜素分子,得到5组反应能量传递、电荷重组等过程的寿命组分:8~40 ps为核心天线中β-胡萝卜素分子通过相邻β-胡萝卜素分子或中间叶绿素a向叶绿素a分子传递能量的时间;85~152 ps为核心天线色素分子激发能传递时间;201~925ps反映部分电荷重组过程;1.031~1.21ns为参与能量传递的色素分子从激发态衰退回到基态的时间;6.17~18、13 ns的长寿命时间组分归因于P680^ Pheo^-的重组过程。将荧光发射谱进行高斯解析,发现在核心复合物中还至少存在Chla683^685、Chla680^682、Chla673,677^679三种特征叶绿素a分子。  相似文献   

12.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (P(Zn)), the accessory Zn-BChl a (B(Zn)), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from P(Zn)(*), measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from B(Zn)(*) to P(Zn), and the latter, the electron transfer from P(Zn) to H. The angle between the transition dipoles of B(Zn) and P(Zn) was estimated to be 36 degrees based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies P(Zn).  相似文献   

13.
The pigment-protein complexes CP43 and CP47 transfer excitation energy from the peripheral antenna of photosystem II toward the photochemical reaction center. We measured the excitation dynamics of the chlorophylls in isolated CP43 and CP47 complexes at 77 K by time-resolved absorbance-difference and fluorescence spectroscopy. The spectral relaxation appeared to occur with rates of 0.2-0.4 ps and 2-3 ps in both complexes, whereas an additional relaxation of 17 ps was observed only in CP47. Using the 3.8-A crystal structure of the photosystem II core complex from Synechococcus elongatus (A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, and P. Orth, 2001, Nature, 409:739-743), excitation energy transfer kinetics were calculated and a Monte Carlo simulation of the absorption spectra was performed. In both complexes, the rate of 0.2-0.4 ps can be ascribed to excitation energy transfer within a layer of chlorophylls near the stromal side of the membrane, and the slower 2-3-ps process to excitation energy transfer to the calculated lowest excitonic state. We conclude that excitation energy transfer within CP43 and CP47 is fast and does not contribute significantly to the well-known slow trapping of excitation energy in photosystem II.  相似文献   

14.
15.
Joseph L. Hughes  Ron Pace 《BBA》2006,1757(7):841-851
The illumination of oxygen-evolving PSII core complexes at very low temperatures in spectral regions not expected to excite P680 leads to charge separation in a majority of centers. The fraction of centers photoconverted as a function of the number of absorbed photons per PSII core is determined by quantification of electrochromic shifts on PheoD1. These shifts arise from the formation of metastable plastoquinone anion (QA) configurations. Spectra of concentrated samples identify absorption in the 700-730 nm range. This is well beyond absorption attributable to CP47. Spectra in the 690-730 nm region can be described by the ‘trap’ CP47 absorption at 689 nm, with dipole strength of ∼1 chlorophyll a (chl a), partially overlapping a broader feature near 705 nm with a dipole strength of ∼0.15 chl a. This absorption strength in the 700-730 nm region falls by 40% in the photoconverted configuration. Quantum efficiencies of photoconversion following illumination in the 690-700 nm region are similar to those obtained with green illumination but fall significantly in the 700-730 nm range. Two possible assignments of the long-wavelength absorption are considered. Firstly, as a low intensity component of strongly exciton-coupled reaction center chlorin excitations and secondly as a nominally ‘dark’ charge-transfer excitation of the ‘special pair’ PD1-PD2. The opportunities offered by these observations towards the understanding of the nature of P680 and PSII fluorescence are discussed.  相似文献   

16.
17.
Structural determination of the photosystem II core complex from spinach   总被引:3,自引:0,他引:3  
A photosystem II core complex was purified with high yield from spinach by solubilization with beta-dodecylmaltoside. The complex consisted of polypeptides with molecular mass 47, 43, 34, 31, 9 and 4 kDa and some minor components, as detected by silver-staining of polyacrylamide gels. There was no indication for the chlorophyll-a/b-binding, light-harvesting complex polypeptides. The core complex revealed electron-transfer activity (1,5-diphenylcarbazide----2,6-dichloroindophenol) of about 30 mumol reduced 2,6-dichloroindophenol/mg chlorophyll/h. The structural integrity was analyzed by electron microscopy. The detergent-solubilized protein complex has the shape of a triangular disk with a maximum diameter of 13 nm and a maximum height of 6.8 nm. The shape of this core complex differs considerably from that of cyanobacterial photosystem II membrane fragments, which are elongated particles. The structural differences between both the complexes of higher plants and cyanobacteria are discussed with special emphasis on their association with the antenna apparatus in the photosynthetic membranes.  相似文献   

18.
Ycf12 is a core subunit in the photosystem II complex   总被引:1,自引:0,他引:1  
The latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of approximately 5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex.  相似文献   

19.
The latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of ∼ 5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex.  相似文献   

20.
Soret-excited resonance Raman spectra of two types of pheophytin-exchanged photosystem II RCs are reported. The cofactor composition of the reaction centers was modified by exchanging pheophytin a for 13(1)-deoxo-13(1)-hydroxypheophytin a, yielding one preparation with selective replacement of the photochemically inactive pheophytin (H(B)) and a second one exhibiting total replacement of H(B) and 40% replacement of H(A), the primary electron acceptor. Resonance Raman spectra indicate that the other bound cofactors present are not significantly perturbed by Pheo substitution. The resonance Raman contributions from H(A) and H(B) in the carbonyl stretching region are identified at 1679 and 1675 cm(-)(1), respectively, indicating that both pheophytin molecules in the photosystem II reaction center have hydrogen-bonded keto-carbonyl groups. This conclusion differs from what is observed in the functionally related RCs of purple non-sulfur bacteria, where the keto-carbonyl group of H(B) is not hydrogen bonded, but confirms predictions from models based on protein sequence alignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号