首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The millimolar Ca2+-requiring form of the Ca2+-dependent proteinase from chicken breast skeletal muscle contains two subunit polypeptides of 80 and 28 kDa, just as the analogous forms of this proteinase from other tissues do. Incubation with Ca2+ at pH 7.5 causes rapid autolysis of the 80-kDa polypeptide to 77 kDa and of the 28-kDa polypeptide to 18 kDa. Autolysis of the 28-kDa polypeptide is slightly faster than autolysis of the 80-kDa polypeptide and is 90-95% complete after 10 s at 0 degrees C. Autolysis for 15 s at 0 degrees C converts the proteinase from a form requiring 250-300 microM Ca2+ to one requiring 9-10 microM Ca2+ for half-maximal activity, without changing its specific activity. The autolyzed proteinase has a slightly lower pH optimum (7.7 vs. 8.1) than the unautolyzed proteinase. The autolyzed proteinase is not detected in tissue extracts made immediately after death; therefore, the millimolar Ca2+-requiring proteinase is largely, if not entirely, in the unautolyzed form in situ.  相似文献   

2.
3.
Although the biochemical changes that occur during autolysis of mu- and m-calpain are well characterized, there have been few studies on properties of the autolyzed calpain molecules themselves. The present study shows that both autolyzed mu- and m-calpain lose 50-55% of their proteolytic activity within 5 min during incubation at pH 7.5 in 300 mM or higher salt and at a slower rate in 100 mM salt. This loss of activity is not reversed by dialysis for 18 h against a low-ionic-strength buffer at pH 7.5. Proteolytic activity of the unautolyzed calpains is not affected by incubation for 45 min at ionic strengths up to 1000 mM. Size-exclusion chromatography shows that ionic strengths of 100 mM or above cause dissociation of the two subunits of autolyzed calpains and that the dissociated large subunits (76- or 78-kDa) aggregate to form dimers and trimers, which are proteolytically inactive. Hence, instability of autolyzed calpains is due to aggregation of dissociated heavy chains. Autolysis removes the N-terminal 19 (m-calpain) or 27 (mu-calpain) amino acids from the large subunit and approximately 90 amino acids from the N-terminus of the small subunit. These regions form contacts between the two subunits in unautolyzed calpains, and their removal leaves only contacts between domain IV in the large subunit and domain VI in the small subunit. Although many of these contacts are hydrophobic in nature, ionic-strength-induced dissociation of the two subunits in the autolyzed calpains indicates that salt bridges have an important, possibly indirect, role in the domain IV/domain VI interaction.  相似文献   

4.
Plant aspartic proteinases (APs) have been isolated from several seed and leaf sources but the only well characterized enzymes from flowers are cardosins and cyprosins from cardoon, Cynara cardunculus L. Here we report a full-length cDNA clone encoding an AP named cenprosin from the flowers of Centaurea calcitrapa L., a thistle related to cardoon. As found for all eukaryotic APs, the deduced primary sequence consists of a signal sequence, a propart and a mature enzyme. In addition, an internal sequence region of 104 residues typical only of plant APs (a plant-specific insert) is present in the primary structure. Northern analysis revealed that the strongest expression is in fresh flowers. The enzyme is also expressed in fairly high amounts in seeds and in leaves, a feature not detected for cardoon APs. The corresponding enzyme was purified in its precursor form from fresh flowers using ammonium-sulfate precipitation followed by ion-exchange and hydrophobic-interaction chromatography. The processing of the precursor into its mature form was studied in vitro. The enzyme underwent autocatalytic processing at pH 3.0 resulting in two chains of 16 and 30 kDa. When dried flowers were used as a starting material for purification, only 16- and 30-kDa chains were obtained, suggesting that autoproteolytic activation of procenprosin in vivo occurs mainly during drying of the flowers. This may indicate a specific degradative role for the enzyme during senescence of the flowers.  相似文献   

5.
A recent hypothesis suggests that proteolytic activity of the micromolar and millimolar Ca2+-requiring forms of the Ca2+-dependent proteinases (mu- and m-calpain, respectively) is regulated in vivo by their association with a phosphatidylinositol-containing site on the plasma membrane followed by autolysis of the proteinases. Phosphatidylinositol association lowers the Ca2+ concentration needed for autolysis, and autolysis, in turn, lowers the Ca2+ concentration needed for proteolytic activity. To test this hypothesis, we have compared the Ca2+ concentrations needed for autolysis and for proteolytic activity of the calpains both in the presence and the absence of phosphatidylinositol. Bovine skeletal muscle mu-calpain required 40-50 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 140-150 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 190-210 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. Consequently, mu-calpain is an active proteinase and does not require autolysis for activation. Bovine skeletal muscle m-calpain required 700-740 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 370-400 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 740-780 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. These results are consistent with the idea that m-calpain functions in its autolyzed form, but the results do not demonstrate that unautolyzed m-calpain is inactive. 80 microM phosphatidylinositol had no effect on the Ca2+ requirement of the autolyzed forms of either mu- or m-calpain but lowered the specific activity of mu-calpain to 20% of its activity in the absence of phosphatidylinositol. Of the four forms of the calpains, unautolyzed m-calpain, autolyzed m-calpain, and unautolyzed mu-calpain would not be proteolytically active at the free Ca2+ concentrations of 300-1200 nM present inside normal cells, and neither mu- nor m-calpain would undergo autolysis at these Ca2+ concentrations, even in the presence of phosphatidylinositol. Cells must contain a mechanism other than or in addition to membrane association and autolysis to activate the calpains.  相似文献   

6.
Two types of aspartic proteinase (AP) genes have been isolated from the cDNA library of developing buckwheat seeds. Analysis of their sequences showed that one of these, FeAP9, resembled the structure and shared high homology with the so-called typical plant APs characterized by the presence of a plant-specific insert (PSI), an element unique among APs. The other cDNA, FeAPL1, encoded an AP-like protein lacking that domain. Different expression profiles were observed for FeAP9 and FeAPL1. FeAPL1 mRNAs were restricted to the seeds only, whereas FeAP9 mRNAs were also present in the other plant tissues - leaves, roots, and flowers. Higher levels of FeAP9 were observed in senescent leaves compared with green leaves. The differential expression pattern of these two unique APs raises the interesting possibility that these proteinases have unique substrate specificity and may have different roles in plant development and other physiological processes.  相似文献   

7.
Polar transport of the plant hormone auxin is regulated at the cellular level by inhibition of efflux from a plasma membrane (PM) carrier. Binding of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to a regulatory site associated with the carrier has been characterized, but the NPA-binding protein(s) have not been identified. Experimental disparities between levels of high-affinity NPA binding and auxin transport inhibition can be explained by the presence of a low-affinity binding site and in vivo hydrolysis of NPA. In Arabidopsis, colocalization of NPA amidase and aminopeptidase (AP) activities, inhibition of auxin transport by artificial beta-naphthylamide substrates, and saturable displacement of NPA by the AP inhibitor bestatin suggest that PM APs may be involved in both low-affinity NPA binding and hydrolysis. We report the purification and molecular cloning of NPA-binding PM APs and associated proteins from Arabidopsis. This is the first report of PM APs in plants. PM proteins were purified by gel permeation, anion exchange, and NPA affinity chromatography monitored for tyrosine-AP activity. Lower affinity fractions contained two orthologs of mammalian APs involved in signal transduction and cell surface-extracellular matrix interactions. AtAPM1 and ATAPP1 have substrate specificities and inhibitor sensitivities similar to their mammalian orthologs, and have temporal and spatial expression patterns consistent with previous in planta histochemical data. Copurifying proteins suggest that the APs interact with secreted cell surface and cell wall proline-rich proteins. AtAPM1 and AtAPP1 are encoded by single genes. In vitro translation products of ATAPM1 and AtAPP1 have enzymatic activities similar to those of native proteins.  相似文献   

8.
Autolytic activity associated with competent group H streptococci   总被引:28,自引:21,他引:7       下载免费PDF全文
Competent cells of group H streptococci strains Wicky and Challis autolyzed markedly when placed at 37 C in 0.05 m tris(hydroxymethyl)methyl-amino-propane sulfonic acid buffer (pH 9.0 to 9.1) containing 0.02 m 2-mercaptoethanol, whereas noncompetent cells autolyzed slightly. Autolysis of competent Wicky cells did not occur at 0 C or after the cells were heated at 100 C for 5 min. Culture fluids derived from strain Challis that contained competence factor (CF) activity did not contain lytic activity. Addition of native deoxyribonucleic acid (DNA) to competent Wicky cells caused a retardation in the rate of autolysis; ribonucleic acid and alkali-denatured DNA had less of an effect. Supernantant fluids derived from competent cell lysates lysed noncompetent Wicky cells but were inactive against cells of Hydrogenomonas eutropha, a group A Streptococcus, and against a commercial lysozyme substrate (Micrococcus lysodeikticus). This lytic activity was inactivated by heat (5 min at 100 C). Electron microscopic observations of autolyzed cells showed that autolysis occurs only at the site of cross-wall formation. A close relationship between the development of competence and autolysis is suggested by the fact that certain conditions that prevent the establishment of the competent state in Wicky populations (such as no CF, addition of CF simultaneously with chloramphenicol, and addition of trypsin-inactivated CF) also prevent autolysis. This observation emphasizes the indirect or inductive nature of CF on these processes.  相似文献   

9.
Abstract: Proteolytic degradation of numerous calpain substrates, including cytoskeletal and regulatory proteins, has been observed during brain ischemia and reperfusion. In addition, calpain inhibitors have been shown to decrease degradation of these proteins and decrease postischemic neuronal death. Although these observations support the inference of a role for μ-calpain in the pathophysiology of ischemic neuronal injury, the evidence is indirect. A direct indicator of μ-calpain proteolytic activity is autolysis of its 80-kDa catalytic subunit, and therefore we examined the μ-calpain catalytic subunit for evidence of autolysis during cerebral ischemia. Rabbit brain homogenates obtained after 0, 5, 10, and 20 min of cardiac arrest were electrophoresed and immunoblotted with a monoclonal antibody specific to the μ-calpain catalytic subunit. In nonischemic brain homogenates the antibody identified an 80-kDa band, which migrated identically with purified μ-calpain, and faint 78- and 76-kDa bands, which represent autolyzed forms of the 80-kDa subunit. The average density of the 80-kDa band decreased by 25 ± 4 ( p = 0.008) and 28 ± 9% ( p = 0.004) after 10 and 20 min of cardiac arrest, respectively, whereas the average density of the 78-kDa band increased by 111 ± 50% ( p = 0.02) after 20 min of cardiac arrest. No significant change in the density of the 76-kDa band was detected. These results provide direct evidence for autolysis of brain μ-calpain during cerebral ischemia. Further work is needed to characterize the extent, duration, and localization of μ-calpain activity during brain ischemia and reperfusion as well as its role in the causal pathway of postischemic neuronal injury.  相似文献   

10.
The binary Bacillus thuringiensis PS149B1 insecticidal crystal (Cry) protein is comprised of two components, Cry34Ab1, a 14-kDa protein, and Cry35Ab1, a 44-kDa protein, the combination of which forms a novel binary toxin active on western corn rootworm larvae. The permeabilizing behavior of the native binary toxin and its two individual components expressed as recombinant proteins was studied using calcein efflux determination in liposomes and by ion channel activity measurements in planar lipid bilayers (PLBs). Data obtained with solubilized native PS149B1 binary protein revealed it to be a pore-forming toxin that can permeabilize liposomes and form ion channels ( approximately 300-900 pS) in PLBs at pH 5.5 but not pH 9.0. The 14-kDa component of the toxin also formed ion channels ( approximately 15-300 pS) at pH 5.5 but did not insert easily in PLBs. While the 44-kDa moiety did seldomly form resolvable ion channels ( approximately 15-750 pS) in PLBs, it did destabilize the membranes. It showed pH-dependent truncation to a stable 40-kDa protein. The purified 40-kDa truncated product formed channels ( approximately 10-450 pS) in PLBs at pH 5.5. At that same pH, while a 3:1 molar mixture (14:44 kDa) of the individual components of the toxin induced channel activity that resembled that of the 14-kDa component alone, the 3:1 molar mixture of the 14-kDa component and 40-kDa truncated product induced channel activity ( approximately 20-800 pS) similar to that of PS149B1 in planar lipid bilayers. We conclude that the overall membrane permeabilization process of Cry34Ab1/Cry35Ab1 is a result of ion channel formation.  相似文献   

11.
A unique feature of plant aspartic proteinase precursors is the presence of an internal domain, known as plant-specific insert, whose function is not completely understood. The three-dimensional structure of the plant-specific insert resembles that of saposin-like proteins, a group of lipid-binding proteins involved in a variety of physiological processes. Here we show that recombinant plant-specific insert is able to interact with phospholipid vesicles and to induce leakage of their contents in a pH- and lipid-dependent manner. The leakage activity is higher at pH 4.5 and requires the presence of acidic phospholipids such as phosphatidylserine. To determine whether the same effect could be observed when the plant-specific insert is part of the precursor form, procardosin A and a mutant form lacking this specific domain were produced and characterized. Procardosin A displays a similar activity profile, whereas the mutant without the plant-specific insert shows only residual activity. These findings indicate that the plant-specific insert domain of plant aspartic proteinases mediates an interaction of their precursors with phospholipid membranes and induces membrane permeabilization. It is therefore possible that the plant-specific insert, alone or in conjunction with the proteolytic activity of plant aspartic proteinases, may function either as a defensive weapon against pathogens or in late autolysis of plant cells.  相似文献   

12.
The skeletal muscle-specific calpain-3 protease is likely involved in muscle repair, although the mechanism is not known. Physiological activation of calpain-3 occurs 24 h following eccentric exercise in humans. Functional consequences of calpain-3 activation are not known; however, calpain-3 has been suggested to be involved in nuclear signaling via NF-κB. To test this and help identify how/where calpain-3 acts, we investigated whether calpain-3 autolysis (hence, activation) following eccentric exercise results in translocation from its normal myofibrillar location to the nucleus or the cytosol. In resting human skeletal muscle, the majority (87%) of calpain-3 was present in myofibrillar fractions, with only a small proportion (<10%) in an autolyzed state. Enriched nuclear fractions contained ~8% of the total calpain-3, which was present in a predominantly (>80%) autolyzed state. Using freshly dissected human muscle fibers to identify freely diffusible proteins, we showed that only ~5% of the total calpain-3 pool was cytosolic. At 3 and 24 h following eccentric step exercise, there was an ~70% increase in autolysis in whole muscle samples (n = 11, P < 0.05, by 1-way ANOVA with repeated measures and Newman-Keuls post hoc analysis). This exercise-induced autolysis was attributed to myofibrillar-bound calpain-3, since neither the amount of calpain-3 nor the proportion autolyzed was significantly changed in enriched nuclear or cytosolic fractions following the exercise intervention. We present a model for calpain-3 localization at rest and following activation in human skeletal muscle and suggest that the functional importance of calpain-3 remains predominantly tightly associated with its localization within the myofibrillar compartment.  相似文献   

13.
mu-Calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that mu-calpain becomes proteolytically active in the presence of 2-200 microM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its activation, which is widely thought to occur at lower intracellular Ca2+ concentration levels ([Ca2+]i; approximately 1 microM) than the levels at which mu-calpain activation occurs. We have demonstrated the Ca2+-dependent autolysis of the calpains in human muscle samples and rat extensor digitorum longus (EDL) muscles homogenized in solutions mimicking the intracellular environment at various [Ca2+] levels (0, 2.5, 10, and 25 microM). Autolysis of calpain-3 was found to occur across a [Ca2+] range similar to that for mu-calpain, and both calpains displayed a seemingly higher Ca2+ sensitivity in human than in rat muscle homogenates, with approximately 15% autolysis observed after 1-min exposure to 2.5 microM Ca2+ in human muscle and almost none after 1- to 2-min exposure to the same [Ca2+]i level in rat muscle. During muscle activity, [Ca2+]i may transiently peak in the range found to autolyze mu-calpain and calpain-3, so we examined the effect of two types of exhaustive cycling exercise (30-s "all-out" cycling, n = 8; and 70% VO2 peak until fatigue, n = 3) on the amount of autolyzed mu-calpain or calpain-3 in human muscle. No significant autolysis of mu-calpain or calpain-3 occurred as a result of the exercise. These findings have shown that the time- and concentration-dependent changes in [Ca2+]i that occurred during concentric exercise fall near but below the level necessary to cause autolysis of calpains in vivo.  相似文献   

14.
Electrical stimulation of nerve fibers is used as a therapeutic tool to treat neurophysiological disorders. Despite efforts to model the effects of stimulation, its underlying mechanisms remain unclear. Current mechanistic models quantify the effects that the electrical field produces near the fiber but do not capture interactions between action potentials (APs) initiated by stimulus and APs initiated by underlying physiological activity. In this study, we aim to quantify the effects of stimulation frequency and fiber diameter on AP interactions involving collisions and loss of excitability. We constructed a mechanistic model of a myelinated nerve fiber receiving two inputs: the underlying physiological activity at the terminal end of the fiber, and an external stimulus applied to the middle of the fiber. We define conduction reliability as the percentage of physiological APs that make it to the somatic end of the nerve fiber. At low input frequencies, conduction reliability is greater than 95% and decreases with increasing frequency due to an increase in AP interactions. Conduction reliability is less sensitive to fiber diameter and only decreases slightly with increasing fiber diameter. Finally, both the number and type of AP interactions significantly vary with both input frequencies and fiber diameter. Modeling the interactions between APs initiated by stimulus and APs initiated by underlying physiological activity in a nerve fiber opens opportunities towards understanding mechanisms of electrical stimulation therapies.  相似文献   

15.
We simulated mechanisms that increase Ca2+ transients with two models: the Luo-Rudy II model for guinea pig (GP) ventricle (GP model) representing long action potential (AP) myocytes and the rat atrial (RA) model exemplifying myocytes with short APs. The interventions were activation of stretch-gated cationic channels, increase of intracellular Na+ concentration ([Na+]i), simulated bet-adrenoceptor stimulation, and Ca2+ accumulation into the sarcoplasmic reticulum (SR). In the RA model, interventions caused an increase of AP duration. In the GP model, AP duration decreased except in the simulated beta-stimulation where it lengthened APs as in the RA model. We conclude that the changes in the APs are significantly contributed by the increase of the Ca2+ transient itself. The AP duration is controlled differently in cardiac myocytes with short and long AP durations. With short APs, an increase of the Ca2+ transient promotes an inward current via Na+/Ca2+-exchanger lengthening the AP. This effect is similar regardless of the mechanism causing the increase of the Ca2+ transient. With long APs the Ca2+ transient increase decreases the AP duration via inactivation of the L-type Ca2+ current. However, L-type current increase (as with beta-stimulation) increases the AP duration despite the simultaneous Ca2+ transient augmentation. The results explain the dispersion of AP changes in myocytes with short and long APs during interventions increasing the Ca2+ transients.  相似文献   

16.
Intracellular microelectrode measurements revealed that a resting potential (RP), an action potential (AP) and a calcium component of AP (named voltage transient, VT) can be influenced by glutamic acid (Glu) and aminoacetic acid (glycine, Gly) in the liverwort Conocephalum conicum. In the continuous presence of 5mM Glu or 5mM Gly, the RP hyperpolarized constantly and the plants became desensitized to the excitatory amino acids (Glu or Gly). Under such circumstances, the amplitudes of APs evoked by stimuli other than Glu or Gly grew, as did their calcium components (VTs). The sudden application of 1-15 mM Glu or Gly to a thallus not yet desensitized resulted in an excitation, i.e. a single AP or AP series. Aspartate (Asp) could not substitute for Glu in any way. Simultaneous action of both amino acids acted synergically to trigger APs. The same phenomenon was observed when glycine solution was enriched with N-methyl-D-aspartic acid (NMDA). Gly-induced APs were totally hindered by 1mM D-amino-5-phosphonopentanoic acid (AP5)--an inhibitor of ionotropic glutamate receptors of the NMDA kind. Glu-induced APs could be totally suppressed by 1mM AP5 as well as by 1mM 6,7-dinitroquinoxaline-2,3-dione (DNQX)--an inhibitor of AMPA/KA receptors. DNQX also completely blocked the calcium component of Glu-evoked APs. After DNQX treatment, the only response to Glu was a membrane potential hyperpolarization (like the Glu response in a desensitized plant). It was concluded that the Glu-induced depolarization and hyperpolarization are separate phenomena. The stimulatory effects of both Glu and Gly on liverwort excitability may be the consequences of an activation of a variety of ionotropic Glu receptor subtypes.  相似文献   

17.
The activation mechanism through limited autolysis of a calcium-activated neutral protease (CANP) with a high sensitivity to calcium ions (microCANP) was analyzed. The rate of autolysis was dependent on microCANP concentration. The reaction was inhibited by high concentrations of digestible substrates but not by a nondigestible substrate. Incubation of microCANP inactivated by N-ethylmaleimide with a small amount of activated microCANP caused the degradation of the former in a manner similar to the autolysis of native microCANP. Immobilized microCANP bound to an anti-microCANP immunoglobulin G column autolyzed on addition of calcium ions. These results show that activation of microCANP through limited autolysis involves both intramolecular and intermolecular reactions.  相似文献   

18.
Alkaline phosphatases (AP) are widely distributed in nature, and generally have a dimeric structure. However, there are indications that either monomeric or multimeric bacterial forms may exist. This paper describes the gene sequence of a psychrophilic marine Vibrio AP, previously shown to be particularly heat labile. The kinetic properties were also indicative of cold adaptation. The amino acid sequence of the Vibrio G15-21 AP reveals that the residues involved in the catalytic mechanism, including those ligating the metal ions, have precedence in other characterized APs. Compared with Escherichia coli AP, the two zinc binding sites are identical, whereas the metal binding site, normally occupied by magnesium, is not. Asp-153 and Lys-328 of E. coli AP are His-153 and Trp-328 in Vibrio AP. Two additional stretches of amino acids not present in E. coli AP are found inserted close to the active site of the Vibrio AP. The smaller insert could be accommodated within a dimeric structure, assuming a tertiary structure similar to E. coli AP. In contrast the longer insert would most likely protrude into the interface area, thus preventing dimer formation. This is the first primary structure of a putative monomeric AP, with indications as to the basis for a monomeric existence. Proximity of the large insert loop to the active site may indicate a surrogate role for the second monomer, and may also shape the catalytic as well as stability characteristics of this enzyme.  相似文献   

19.
Alkaline phosphatase (AP) from the cold-adapted Vibrio strain G15-21 is among the AP variants with the highest known k(cat) value. Here the structure of the enzyme at 1.4 A resolution is reported and compared to APs from E. coli, human placenta, shrimp and the Antarctic bacterium strain TAB5. The Vibrio AP is a dimer although its monomers are without the long N-terminal helix that embraces the other subunit in many other APs. The long insertion loop, previously noted as a special feature of the Vibrio AP, serves a similar function. The surface does not have the high negative charge density as observed in shrimp AP, but a positively charged patch is observed around the active site that may be favourable for substrate binding. The dimer interface has a similar number of non-covalent interactions as other APs and the "crown"-domain is the largest observed in known APs. Part of it slopes over the catalytic site suggesting that the substrates may be small molecules. The catalytic serines are refined with multiple conformations in both monomers. One of the ligands to the catalytic zinc ion in binding site M1 is directly connected to the crown-domain and is closest to the dimer interface. Subtle movements in metal ligands may help in the release of the product and/or facilitate prior dephosphorylation of the covalent intermediate. Intersubunit interactions may be a major factor for promoting active site geometries that lead to the high catalytic activity of Vibrio AP at low temperatures.  相似文献   

20.
A protease, MCP-01, produced by a deep-sea psychrotrophic strain of Pseudoaltermonas sp. SM9913 was purified and its autolysis reaction at 20 °C–50 °C was monitored by capillary electrophoresis. Capillary electrophoresis provides a rapid assay because the degree and state of autolysis of protease MCP-01 could be observed within 6 min. The autolysis rate increased as the temperature rose in the tested range. After 30 min incubation at 30 °C, 77% of MCP-01 autolyzed into peptides. However, its activity for the hydrolysis of casein was reduced by only 4%. The rate of loss of activity of MCP-01 was thus slower than that of autolysis of MCP-01 at 30 °C. Similar results were obtained when MCP-01 was incubated at 20 °C, 40 °C and 50 °C. Large peptides produced by autolysis of MCP-01 therefore still have catalytic activity. When these large peptides autolyzed further into smaller peptides, the enzyme conformation that retained its catalytic activity was destroyed and activity was lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号