首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal   总被引:15,自引:0,他引:15  
Summary XY females (n=17) were analysed for mutations in SRY (sex-determining region Y gene), a gene that has recently been equated with the testis determining factor (TDF). SRY sequences were amplified by the polymerase chain reaction (PCR) and analysed by both the single strand conformational polymorphism assay (SSCP) and DNA sequencing. The DNA from two individuals gave altered SSCP patterns; only these two individuals showed any DNA sequence variation. In both cases, a single base change was found, one altering a tryptophan codon to a stop codon, the other causing a glycine to arginine amino acid substitution. These substitutions lie in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. The corresponding regions of DNA from the father of one individual and the paternal uncle of the other, were sequenced and found to be normal. Thus, in both cases, sex reversal is associated with de novo mutations in SRY. Combining this data with two previously published reports, a total of 40 XY females have now been analysed for mutations in SRY. The number of de novo mutations in SRY is now doubled to four, adding further strength to the argument that SRY is TDF.  相似文献   

2.
Y染色体上的性别决定区域——SRY基因作为睾丸决定因子,可以调控男性性别发育过程。SRY基因是一种转录因子,属于带有高迁移率族蛋白家族,该家族成员包含能与DNA结合的HMG盒基序。已知SRY基因的缺失和点突变是造成XY女性性反转的病因之一。通过筛查10位中国46,XY女性性反转病人SRY基因的开放阅读框区域,探寻新的突变类型。用标准方法从外周血中抽提gDNA,通过聚合酶链式反应扩增SRY基因中部的609bp的DNA片段。扩增后的PCR片段被克隆到pUCm-T载体中,在ABI377-3自动测序仪上完成测序。运用限制性内切酶酶切分析的方法验证DNA测序的结果。结果表明,在两个患者的SRY基因中分别发现了新的核苷酸点突变,并都导致氨基酸替代。一个突变发生在SRY基因的5’端HMG盒外的核苷酸第113位腺嘌呤(A)被鸟嘌呤(G)取代,并导致谷氨酸被甘氨酸替换;另一个突变是第387位核苷酸发生T被A替换,该突变引起第129位的酪氨酸变成终止密码,她父亲的SRY序列被证明是正常的野生型。通过查询文献和人类基因突变数据库(HGMD),这两个突变都是以前未见报道过的新型SRY基因突变,并使因核苷酸替换引起SRY基因突变总数增加到45。  相似文献   

3.
46,XY女性患者SRY基因启动子区域的突变分析   总被引:1,自引:0,他引:1  
大约15%的46,XY女性患者中发现SRY基因编码区突变,其他患者可能是SRY基因的调节区, 包括启动子区域发生了突变,或者其他相关基因发生突变所致。本文采用限制性酶切、PCR-SSCP及银染检测技术,对7例患者SRY基因的启动子区域进行了突变筛查, 结果未发现异常,提示这些患者的病因与SRY基因启动子区域本身无关,结合对患者SRY基因HMG基序DNA的突变分析结果,表明除SRY基因异常外还存在其他导致46,XY女性性反转综合征的遗传机制。 Abstract:Using restriction endonuelease digestion and PCR-SSCP with silver staining,we analyzed the promotor region of SRY gene in seven 46,XY femalcs.The results showed no abnormality,thus ruling out the mutations in the promotor region of the SRY gene as a possible cause of sex reversal in these XY females.In view with the absence of the mutations in the HMG regions of the SRY genes of several patients,it is suggested that SRY gene is not the only gene responsible for testicular development but is one of many hierarchical genes involved in a genetic cascade for sexual differentiation.  相似文献   

4.
Mutations in the sex-determining region of the Y chromosome (the SRY gene) have been reported in low frequency in patients with 46,XY gonadal dysgenesis. We investigated 21 Brazilian 46,XY sex-reversed patients, who presented either complete or partial gonadal dysgenesis or embryonic testicular regression syndrome. Using Southern blotting, polymerase chain reaction, denaturing gradient gel electrophoresis and direct sequencing, we analyzed deletions and point mutations in the SRY gene. We found a missense mutation at codon 18 upstream of the 5′ border of the HMG box of the SRY gene in one patient with partial gonadal dysgenesis. This variant sequence was also found in DNA obtained from blood and sperm cells of his father and in blood cells of his normal brother. The S18N mutation was not found in 50 normal males, ruling out the possibility of a common polymorphism. We identified a novel familial missense mutation (S18N) in the 5’ non-HMG box of the SRY gene in 1 of 21 patients with 46,XY sex reversal. Received: 6 May 1997 / Accepted: 2 October 1997  相似文献   

5.
Recently, the gene for the determination of maleness has been identified in the sex-determining region on the short arm of the Y chromosome (SRY) between the Y-chromosomal pseudoautosomal boundary (PABY) and the ZFY gene locus. Experiments with transgenic mice confirmed that SRY is a part of the testis-determining factor (TDF). We describe a sporadic case of a patient with intersexual genitalia and the histological finding of ovotestes in the gonad, which resembles the mixed type of gonadal tissue without primordial follicle structures. The karyotype of the patient was 46,XY. By PCR amplification, we tested for the presence of PABY, SRY, and ZFY by using DNA isolated from peripheral blood leukocytes and for the presence of SRY by using DNA obtained from histological gonadal slices. The SRY products of both DNA preparations were further analyzed by direct sequencing. All three parts of the sex-determining region of the Y chromosome could be amplified from leukocytic DNA. The patient's and the father's SRY sequences were identical with the published sequence. In the SRY PCR product of gonadal DNA, the wild-type and two point mutations were present in the patient's sequence, simulating a heterozygous state of a Y-chromosomal gene: one of the mutations was silent, while the other encoded for a nonconservative amino acid substitution from leucine to histidine. Subcloning procedures showed that the two point mutations always occurred together. The origin of the patient's intersexuality is a postzygotic mutation of the SRY occurring in part of the gonadal tissue. This event caused the loss of the testis-determining function in affected cells.  相似文献   

6.
True hermaphroditism (TH) is an unusual form of sex reversal, characterized by the development of testicular and ovarian tissue in the same subject. Approximately 60% of the patients have a 46,XX karyotype, 33% are mosaics with a second cell line containing a Y chromosome, while the remaining 7% are 46,XY. Molecular analyses have demonstrated that SRY is present in only 10% of TH with a 46,XX karyotype; therefore, in the remaining 90%, mutations at unknown X-linked or autosomal sex determining loci have been proposed as factors responsible for testicular development. True hermaphroditism presents considerable genetic heterogeneity with several molecular anomalies leading to the dual gonadal development as SRY point mutations or SRY hidden gonadal mosaicism. In order to identify genetic defects associated with subjects with the disease, we performed molecular analyses of the SRY gene in DNA from blood leukocytes and gonadal tissue in 12 true hermaphrodites with different karyotypes. Our results using PCR and FISH analyses reveal the presence of hidden mosaicism for SRY or other Y sequences in some patients with XX true hermaphroditism and confirms that mosaicism for SRY limited to the gonads is an alternative mechanism for testicular development in 46,XX true hermaphrodites.  相似文献   

7.
In mammals, a master gene located on the Y chromosome, the testis-determining gene SRY, controls sex determination. SRY protein is expressed in the genital ridge before testis determination, and in the testis it is expressed in Sertoli and germ cells. Completely sex-reversed patients are classified as either 46,XX males or 46,XY females. SRY mutations have been described in only 15% of patients with 46,XY complete or partial gonadal dysgenesis. However, although incomplete or partial sex-reversal affects 46,XX true hermaphrodites, 46,XY gonadal dysgenesis, and 46,XX/46,XY mosaicism, only 15% of the 46,XX true hermaphrodites analyzed have the SRY gene. Here, we demonstrate that the SRY protein is expressed in the tubules of streak gonads and rete testis, indicating that the SRY protein is normally expressed early during testis determination. Based on these results, we propose that some factors downstream from SRY may be mutated in these 46,XY sex-reversal patients. We have also analyzed SRY protein expression in the ovotestis from 46,XX true hermaphrodites and 46,XX/46,XY mosaicism, demonstrating SRY protein expression in both testicular and ovarian portions in these patients. This suggests that the SRY protein does not inhibit ovary development. These results confirm that other factors are needed for complete testis development, in particular, those downstream of the SRY protein.  相似文献   

8.
We describe a novel double nucleotide substitution in the SRY gene of a 46,XY female with gonadal dysgenesis or Swyer syndrome. The SRY sequence was analysed by both the single-strand conformational polymorphism assay and direct DNA sequencing of products from the polymerase chain reaction. A double nucleotide substitution was identified at codon 18 of the conserved HMG box motif, causing an arginine to asparagine amino-acid substitution. The altered residue is situated in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. Since the mutation abolishes one HhaI recognition site, the results were confirmed by HhaI restriction mapping. No other mutations were found in the remaining regions of the gene. The corresponding DNA region from the patient’s brother was analysed and found to be normal. We conclude that the SRY mutation in the reported XY female occurred de novo and is associated with sex reversal. Received: 16 December 1996 / Accepted: 5 May 1997  相似文献   

9.
Mixed gonadal dysgenesis (MGD) includes a group of heterogeneous conditions consisting of a dysgenetic testis with a streak gonad. MGD is probably due to a disturbance in testicular determination/differentiation. The objective of this study is to analyze the SRY gene in MGD patients. A molecular investigation was undertaken in sixteen patients with this disorder in an attempt to determine mutations in SRY through polymerase chain reaction, single strand conformational polymorphism and direct sequencing. Eleven patients showed 45,X/46,XY and five 46,XY karyotype. Mutations in SRY gene were shown to be absent in these patients. This study confirms the findings of other studies. The etiology of MGD is heterogeneous, and cytogenetics mosaicism typically seen in these patients may be a cause of this condition, although, the presence of mutations in testicular organizing genes downstream of SRY is still to rule out.  相似文献   

10.

Background

Primary amenorrhea due to 46,XY disorders of sex differentiation (DSD) is a frequent reason for consultation in endocrine and gynecology clinics. Among the genetic causes of low-testosterone primary amenorrhea due to 46,XY DSD, SRY gene is reported to be frequently involved, but other genes, such as SF1 and WT1, have never been studied for their prevalence.

Methods

We directly sequenced SRY, SF1 and WT1 genes in 15 adolescent girls with primary amenorrhea, low testosterone concentration, and XY karyotype, to determine the prevalence of mutations. We also analyzed the LH receptor gene in patients with high LH and normal FSH concentrations.

Results

Among the 15 adolescents with primary amenorrhea and low testosterone concentration, we identified two new SRY mutations, five new SF1 mutations and one new LH receptor gene mutation. Our study confirms the 10-15% prevalence of SRY mutations and shows the high prevalence (33%) of SF1 abnormalities in primary amenorrhea due to 46,XY DSD with low plasma testosterone concentration.

Conclusions

The genetic analysis of low-testosterone primary amenorrhea is complex as several factors may be involved. This work underlines the need to systematically analyze the SF1 sequence in girls with primary amenorrhea due to 46,XY DSD and low testosterone, as well as in newborns with 46,XY DSD.  相似文献   

11.
This paper reports a case of XY gonadal dysgenesis in two sisters. Both patients presented an eunochoid female phenotype with normal external genitalia. At laparotomy, the elder sister was found to have bilateral gonadoblastoma. Cytogenetic studies, which included G and C banding and in situ hybridization, showed that the patients had an apparently normal 46, XY karyotype. PCR analyses revealed absence of the conserved portion (HMG box) of the SRY gene and of the Y chromosome pseudoautosomal boundary region sequence in both patients. The presence of the ZFY sequence was detected by Southern hybridization in the two affected sisters. The patients' father (46, XY, no mosaicism detected in peripheral blood lymphocytes) was positive for SRY and ZFY sequences. The occurrence of gonadoblastoma is discussed in terms of the genetic factors that may lead to tumor development.  相似文献   

12.
13.
一个46,XY"女性"不育症家系的遗传学分析   总被引:1,自引:0,他引:1  
运用常规的染色体G带分析和基因分析技术对-46,XY男性女性化家系进行遗传学分析,发现:先证者及其妹妹的染色体核型为46,XY,其母亲和父亲的核型正常;对睾丸决定基因(SRY)和雄激素受体基因(AR)进行突变检测,在SRY基因的整个编码区中没有发现突变,而AR基因的第7个外显子的第840个密码子由CGT(编码精氨酸)变为CAT(编码组氨酸),这一改变可能是导致核型为46,XY女性化而发生不育。  相似文献   

14.
The sex-determining region of the Y chromosome (SRY) plays a key role in human sex determination, as mutations in SRY can cause XY sex reversal. Although some SRY missense mutations affect DNA binding and bending activities, it is unclear how others contribute to disease. The high mobility group domain of SRY has two nuclear localization signals (NLS). Sex-reversing mutations in the NLSs affect nuclear import in some patients, associated with defective importin-beta binding to the C-terminal NLS (c-NLS), whereas in others, importin-beta recognition is normal, suggesting the existence of an importin-beta-independent nuclear import pathway. The SRY N-terminal NLS (n-NLS) binds calmodulin (CaM) in vitro, and here we show that this protein interaction is reduced in vivo by calmidazolium, a CaM antagonist. In calmidazolium-treated cells, the dramatic reduction in nuclear entry of SRY and an SRY-c-NLS mutant was not observed for two SRY-n-NLS mutants. Fluorescence spectroscopy studies reveal an unusual conformation of SRY.CaM complexes formed by the two n-NLS mutants. Thus, CaM may be involved directly in SRY nuclear import during gonadal development, and disruption of SRY.CaM recognition could underlie XY sex reversal. Given that the CaM-binding region of SRY is well-conserved among high mobility group box proteins, CaM-dependent nuclear import may underlie additional disease states.  相似文献   

15.
Two novel mutations in the sex-determining gene SRY were identified by screening DNA from 30 sex-reversed XY females by using the SSCP assay. Both point mutations lead to an amino acid substitution in the DNA-binding high-mobility-group domain of the SRY protein. The first mutation, changing a serine at position 91 to glycine, was found in a sporadic case. The second mutation, leading to replacement of a highly conserved proline at position 125 with leucine, is shared by three members of the same family, two sisters and a half sister having the same father. The mutant SRY proteins showed reduced DNA-binding ability in a gel-shift assay. Analysis of lymphocyte DNA from the respective fathers revealed that they carry both the wild-type and the mutant version of the SRY gene. The fact that both fathers transmitted the mutant SRY copy to their offspring implies that they are mosaic for the SRY gene in testis as well as in blood, as a result of a mutation during early embryonic development.  相似文献   

16.
Among a group of patients with abnormal sexual differentiation, we have identified two subjects who had a 46,XY karyotype, ambiguous genitalia, and well-developed Müllerian structures, but normal appearing testes. The presence of ambiguous genitalia and persistent Müllerian structures implied both Leydig cell and Sertoli cell dysfunction, hence, gonadal dysgenesis. However, the normal testicular histology suggested that the underlying abnormality was not a defect in testis determination itself but an abnormality in timing of gonadal ridge and testis development. In one of the two subjects genomic DNA was available. The sequence of the SRY gene was normal. Because rare patients with partial androgen insensitivity may have a similar phenotype, the AR gene was evaluated by denaturing gradient gel electrophoresis (DGGE) and was normal. Some subjects with mutation of the WT1 gene or with deletion of the distal short arm of chromosome 9 may have similar phenotypes. The WT1 gene was studied by single-strand conformation polymorphism (SSCP) analysis and was normal. In addition, there was no loss of heterozygosity of polymorphic markers in distal 9p. The gene for Müllerian inhibiting substance (MIS) was also studied by SSCP and was normal. Although the exact mechanism for the defect in the two subjects is unknown, it may be due to an abnormality in a gene or genes involved in the timing of gonadal ridge development. Received: 5 August 1994 / Revised: 25 January 1995, 3 April 1995  相似文献   

17.
Despite the identification of an increasing number of genes involved in sex determination and differentiation, no cause can be attributed to most cases of 46, XY gonadal dysgenesis, approximately 20% of 46, XX males and the majority of subjects with 46, XX true hermaphroditism. Perhaps the most interesting candidate for involvement in sexual development is SOX3, which belongs to the same family of proteins (SOX) as SRY and SOX9, both of which are involved in testis differentiation. As SOX3 is the most likely evolutionary precursor to SRY, it has been proposed that it has retained a role in testis differentiation. Therefore, we screened the coding region and the 5 and 3 flanking region of the SOX3 gene for mutations by means of single-stranded conformation polymorphism and heteroduplex analysis in eight subjects with 46, XX sex reversal (SRY negative) and 25 subjects with 46, XY gonadal dysgenesis. Although no mutations were identified, a nucleotide polymorphism (1056C/T) and a unique synonymous nucleotide change (1182A/C) were detected in a subject with 46, XY gonadal dysgenesis. The single nucleotide polymorphism had a heterozygosity rate of 5.1% (in a control population) and may prove useful for future X-inactivation studies. The absence of SOX3 mutations in these patients suggests that SOX3 is not a cause of abnormal male sexual development and might not be involved in testis differentiation.An erratum to this article can be found at  相似文献   

18.
The human Y chromosome encodes a testis-determining factor (TDF) which is responsible for initiating male sex determination. Recently a region of the Y chromosome (SRY) was identified as part of the TDF gene. We have identified a three-generation family (N) in which all XY individuals have a single base-pair substitution resulting in a conservative amino acid change in the conserved domain of the SRY open reading frame. Three individuals are XY sex-reversed females, and two are XY males. Several models are proposed to explain association between a sequence variant in SRY and two sex phenotypes.  相似文献   

19.
Summary The syndrome of 46,XX true hermaphroditism is a clinical condition in which both ovarian and testicular tissue are found in one individual. Both Mullerian and Wolffian structures are usually present, and external genitalia are often ambiguous. Two alternative mechanisms have been proposed to explain the development of testicular tissue in these subjects: (1) translocation of chromosomal material encoding the testicular determination factor (TDF) from the Y to the X chromosome or to an autosome, or (2) an autosomal dominant mutation that permits testicular determination in the absence of TDF. We have investigated five subjects with 46,XX true hermaphroditism. Four individuals had a normal 46,XX karyotype; one subject (307) had an apparent terminal deletion of the short arm of one X chromosome. Genomic DNA was isolated from these individuals and subjected to Southern blot analysis. Only subject 307 had Y chromosomal sequences that included the pseudoautosomal boundary, SRY (sex-determining region of Y), ZFY (Y gene encoding a zinc finger protein), and DXYS5 (an anonymous locus on the distal short arm of Y) but lacked sequences for DYZ5 (proximal short arm of Y) and for the long arm probes DYZ1 and DYZ2. The genomic DNA of the other four subjects lacked detectable Y chromosomal sequences when assayed either by Southern blotting or after polymerase chain reaction amplification. Our data demonstrate that 46,XX true hermaphroditism is a genetically heterogeneous condition, some subjects having TDF sequences but most not. The 46,XX subjects without SRY may have a mutation of an autosomal gene that permits testicular determination in the absence of TDF.  相似文献   

20.
六例性反转综合征患者的分子遗传学分析   总被引:2,自引:0,他引:2  
对六例性反转综合征患者(3例XX男性)(3例XY女性)用Y-特异性DNA探针进行了Southern印迹杂交分析,并用PCR技术扩增了SRY基因部分序列。结果表明,1例XX男性缺乏源于Y染色体的杂交信号,也无SRY基因;其余2例XX男性和3例XY女性都检测到Yp-DNA序列和SRY基因。这对进一步阐明性反转综合征的病因和SRY基因的作用机制具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号