首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of rat adipocytes with 1 microM-noradrenaline caused a decrease in both the N-ethylmaleimide-sensitive (microsomal) and N-ethylmaleimide-insensitive (mitochondrial) glycerol phosphate acyltransferase activities measured in homogenates from freeze-stopped cells. The effects of noradrenaline on glycerol phosphate acyltransferase activity were apparent over a wide range of concentrations of glycerol phosphate and palmitoyl-CoA. The effect of noradrenaline was reversed within cells by the subsequent addition of insulin or propranolol. Inclusion of albumin in homogenization buffers abolished the effect of noradrenaline on the N-ethylmaleimide-sensitive activity. The effect of noradrenaline on the N-ethylmaleimide-insensitive (mitochondrial) activity was, however, not abolished by inclusion of albumin in buffers for preparation of homogenates from freeze-stopped cells. Inclusion of fluoride in homogenization buffers did not alter the observed effect of noradrenaline. The inactivating effect of noradrenaline persisted through the subcellular fractionation procedures used to isolate adipocyte microsomes (microsomal fractions). The effect of noradrenaline on mitochondrial glycerol phosphate acyltransferase did not persist through subcellular fractionation. Noradrenaline treatment of cells significantly decreased the Vmax. of glycerol phosphate acyltransferase in isolated microsomes without changing the activity of NADPH-cytochrome c reductase. Glycerol phosphate acyltransferase activity in microsomes from noradrenaline-treated cells is unstable, being rapidly lost on incubation at 30 degrees C. Bivalent metal ions (Mg2+, Ca2+) or post-microsomal supernatant protected against this inactivation. Glycerol phosphate acyltransferase activity in microsomes from noradrenaline-treated cells could not be re-activated by incubation with either alkaline phosphatase or phosphoprotein phosphatase-1. Addition of cyclic AMP-dependent protein kinase catalytic subunits to adipocyte microsomes incubated with [gamma-32P]ATP considerably increased the incorporation of 32P into microsomal protein, but did not cause inactivation of glycerol phosphate acyltransferase. These findings provide no support for the proposal that inactivation of adipocyte microsomal glycerol phosphate acyltransferase by noradrenaline is through a phosphorylation type of covalent modification.  相似文献   

2.
Glycerolphosphate acyltransferase activity in microsomes from rat adipose tissue is shown to decrease with time upon incubation with adipose tissue cytosolic fraction. The inactivation can be prevented with serum albumin and seems to be caused by an increase in endogenous free fatty acid as a consequence of the action of cytosolic lipase(s) on the membrane lipids. Similar inactivation can be observed after short incubation of microsomes with oleic acid at micromolar concentrations. Diacylglycerol acyltransferase is also inhibited by oleic acid, although to a lesser degree. In contrast, glucose-6-phosphatase and NADPH-cytochrome reductase activities are not changed. The oleic acid effect appears to occur upon binding to the microsomal membranes and can be prevented by bovine serum albumin at protein/fatty acid molar ratios above one. These results suggest that free fatty acids may be involved in the modulation of triacylglycerol synthetic enzymes.  相似文献   

3.
The effect of methotrexate on lipids in serum and liver and key enzymes involved in esterification and oxidation of long-chain fatty acids were investigated in rats fed a standard diet and a defined choline-deficient diet. Hepatic metabolism of long-chain fatty acids were also studied in rats fed the defined diet with or without choline. When methotrexate was administered to the rats fed the standard diet there was a slight increase in hepatic lipids and a moderate reduction in the serum level. The palmitoyl-CoA synthetase activity and the microsomal glycerophosphate acyltransferase activity in the liver of rats were increased by methotrexate. The data are consistent with those where the liver may fail to transfer the newly formed triacylglycerols into the plasma with a resultant increase in liver triacylglycerol content and a decrease in serum lipid levels. Fatty liver of methotrexate-exposed rats can not be attributed simply to a reduction of fatty acid oxidation as the carnitine palmitoyltransferase activity was increased. The methotrexate response in the rats fed the defined choline-deficient diet was different. There was a reduction in both serum and hepatic triacylglycerol and the glycerophosphate acyltransferase and palmitoyl-CoA synthetase activities. The carnitine palmitoyltransferase activity was unchanged. Hepatomegaly and increased hepatic fat content, but decreased serum triacylglycerol, total cholesterol and HDL cholesterol were found to be related to the development of choline deficiency as the pleiotropic responses were almost fully prevented by addition of choline to the choline-deficient diet. Addition of choline to the choline-deficient diet normalized the total palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities. In contrast to methotrexate exposure, choline deficiency increased the mitochondrial glycerophosphate acyltransferase activity. The data are consistent with those of where fatty liver induction of choline deficiency may be related to an enhanced esterification of long-chain fatty acids concomitant with a reduction of their oxidation.  相似文献   

4.
Key enzymes involved in oxidation and esterification of long-chain fatty acids were investigated in male rats fed different types and amounts of oil in their diet. A diet with 20% (w/w) fish oil, partially hydrogenated fish oil (PHFO) and partially hydrogenated soybean oil (PHSO) was shown to stimulate the mitochondrial and microsomal palmitoyl-CoA synthetase activity (EC 6.2.1.3) compared to soybean oil-fed animals after 1 week of feeding. Rapeseed oil had no effect. Partially hydrogenated oils in the diet resulted in significantly higher levels of mitochondrial glycerophosphate acyltransferase compared to unhydrogenated oils in the diet. Rats fed 20% (w/w) rapeseed oil had a decreased activity of this mitochondrial enzyme, whereas the microsomal glycerophosphate acyltransferase activity was stimulated to a comparable extent with 20% (w/w) rapeseed oil, fish oil or PHFO in the diet. Increasing the amount of PHFO (from 5 to 25% (w/w)) in the diet for 3 days led to increased mitochondrial and microsomal palmitoyl-CoA synthetase and microsomal glycerophosphate acyltransferase activities with 5% of this oil in the diet. The mitochondrial glycerophosphate acyltransferase was only marginally affected by increasing the oil dose. Administration of 20% (w/w) PHFO increased rapidly the mitochondrial and microsomal palmitoyl-CoA synthetase, carnitine palmitoyltransferase and microsomal glycerophosphate acyltransferase activities almost to their maximum value within 36 h. In contrast, the glycerophosphate acyltransferase and palmitoyl-CoA hydrolase (EC 3.1.2.2) activities of the mitochondrial fraction and the peroxisomal beta-oxidation reached their maximum activities after administration of the dietary oil for 6.5 days. This sequence of enzyme changes (a) is in accordance with the proposal that an increased cellular level of long-chain acyl-CoA species act as metabolic messages for induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase, i.e., these enzymes are regulated by a substrate-induced mechanism, and (b) indicates that, with PHFO, a greater part of the activated fatty acids are directed from triacylglycerol esterification and hydrolysis towards oxidation in the mitochondria. It is also conceivable that the mitochondrial beta-oxidation is proceeding before the enhancement of peroxisomal beta-oxidation.  相似文献   

5.
The present study was conducted to examine esterification of retinol by testicular microsomes. The microsomes were isolated from rat testes and were incubated under varying assay conditions with [3H]retinol. [3H]Retinylpalmitate was identified by reversed-phase high-performance liquid chromatography as an esterified product. The rate of esterification was increased by the addition of a fatty acyl-CoA. Coenzyme A esters of oleic, palmitic and stearic acids were equally effective substrates for retinol esterification. A 17-fold increase was observed in the presence of palmitoyl-CoA when microsomes had been pretreated with hydroxylamine, a reagent that reacts with coenzyme A thioesters to form hydroxamic acids. The esterifying activity was stimulated by the addition of dithiothreitol (4 mM) and fatty acid-free bovine serum albumin (1 mg/ml). The optimal concentrations for retinol and palmitoyl-CoA were 40 microM and 30-40 microM, respectively. The enzyme activity was inhibited by p-hydroxymercuribenzoate, sodium taurocholate and 5,5'-dithiobis-(2-nitrobenzoic acid), but not by EDTA. The enzyme activity was highest in microsomes (36%). However, some activity was present in mitochondria (29%). These results clearly show the presence of a fatty acyl-CoA: retinol acyltransferase that catalyzes the esterification of retinol in rat testes.  相似文献   

6.
Solubilized glycerophosphate acyltransferase from Escherichia coli was reconstituted in small unilamellar vesicles consisting of phosphatidylcholine/phosphatidylglycerol in a molar ratio of 4:1. Glycerol 3-phosphate, trapped inside these vesicles, cannot be acylated by the enzyme upon addition of extra-vesicular palmitoyl-CoA. Thus, substrate-binding sites and active sites are asymmetrically oriented in the model membrane. When up to 10 mol/100 mol lysophosphatidic acid was incorporated in the vesicles a decrease in glycerophosphate acyltransferase activity is observed at amounts exceeding 1 mol% lysophosphatidate. Similar experiments, using lysophosphatidylcholine and phosphatidic acid, suggest the decrease to result from an increase in negative surface charge. Reconstituted glycerophosphate acyltransferase exhibits a preference for palmitoyl-CoA over oleoyl-CoA. This preference increases considerably at elevated temperatures. The glycerophosphate acyltransferase could, therefore, participate in the temperature-dependent changes in the fatty acid composition of the phospholipids in E. coli.  相似文献   

7.
Both glycerophosphate and monoacylglycerophosphate acyltransferases from Euglena microsomes were inhibited by N-ethylmaleimide, but their responses to heat inactivation and sn-glyceraldehyde-3-phosphate differed. Glycerophosphate acyltransferase had a higher V with palmitoyl-CoA compared to oleoyl-CoA; the reverse was true for monoacylglycerophosphate acyltransferase. Km's (microM) for the glycerophosphate acyltransferase were: palmitoyl-CoA, 21; oleoyl-CoA, 14; and sn-glycerol-3-phosphate, 2900. Km's (microM) for monoacylglycerophosphate acyltransferase were: palmitoyl-CoA, 7; oleoyl-CoA, 4; and 1-palmitoyl-sn-glycerol-3-phosphate, 48.  相似文献   

8.
Positional distribution of fatty acids in phospholipids from Brevibacterium ammoniagenes was analyzed to find that phosphatidylethanolamine consisted mainly of 1-saturated acyl 2-unsaturated acyl species while phosphatidylglycerol consisted mainly of 1-unsaturated acyl 2-saturated acyl species. Three acyltransferase systems were characterized in a membrane preparation--the acylations of glycerophosphate, 1-acyl-glycerophosphate, and 2-acyl-glycerophosphate--which appeared to be catalyzed by different enzymes. The distribution of fatty acids in the phosphatidylethanolamine molecule was not correlated simply with the specificities of these enzymes, but the relatively high specificity for palmitoyl-CoA of the glycerophosphate acyltransferase system to form 2-acyl-glycerophosphate, followed the relatively high specificity for oleoyl-CoA of the 2-acyl-glycerophosphate acyltransferase system, provided a basis for producing the major molecular species of phosphatidylglycerol.  相似文献   

9.
Membrane preparations from Saccharomyces cerevisiae OC-2 catalyzed the acylation of glycerophosphate, 1-acyl and 2-acyl isomers of monoacylglycerophosphate, and 1-acyl and 2-acyl isomers of monoacylglycerylphosphorylcholine. The acyl-CoA:glycerophosphate acyltransferase system (EC 2.3.1.15) showed a broad specificity for acyl-CoAs when the maximal velocities were compared under optimized conditions. The acyl-CoA:2-acylglycerophosphate acyltransferase activity was much lower than the 1-acyl-glycerophosphate acyltransferase activity. Although the 1-acylglycerophosphate acyltransferase system utilized saturated and unsaturated acyl-CoAs at comparable rates, the acylations at the 1- and 2-positions were relatively more selective for palmitate and oleate, respectively, when assayed in the presence of palmitoyl-CoA, oleoyl-CoA, 1-acylglycerophosphate, and 2-acylglycerophosphate. The acyl-CoA:1-acylglyceryl-phosphorylcholine acyltransferase system (EC 2.3.1.23) was relatively more specific for unsaturated acyl-CoAs, while the acyl-CoA:2-acylglycerylphosphorylcholine acyltransferase system (EC 2.3.1.23) utilized both palmitoyl-CoA and oleoyl-CoA at a comparable rate. Although various acyltransferase systems showed a different degree of specificity for acyl-CoAs, the positional distribution of fatty acids in the phospholipid molecules could not be explained simply by the observed specificities. Zymolyase, β-1,3-glucanase from Arthrobacter luteus, was used successfully for the protoplast formation. Subcellular fractionation of the protoplast revealed that these acyltransferase activities were localized mainly in the microsomal fraction. However, the glycerophosphate and 1-acylglycerophosphate acyltranferase activities in the mitochondrial fraction could not be explained by the contamination of microsomes in this fraction. These observations are apparently inconsistent with a current concept that the mitochondrial fraction is the major site of phospholipid synthesis in yeast.  相似文献   

10.
Particulate preparations obtained from cells of yeast Saccharomyces sake have been shown to possess glycerolphosphate acyltransferase and 1-acylglycerolphosphate acyltransferase activities. Glycerolphosphate acyltransferase exhibits a high specificity for saturated and monoenoic fatty acyl-CoA thioesters. When palmitoyl-CoA is employed as sole acyl group donor, the major lipid product is lysophosphatidic acid. 1-Acylglycerolphosphate acyltransferase of this yeast species has a rather strict specificity for monoenoic fatty acyl-CoA thioesters as acyl donor. These two acyltransferases are strongly inhibited in vitro by low concentrations of free fatty acids. 1-Acylglycerolphosphate acyltransferase is much more susceptible to fatty acid inhibition than glycerolphosphate acyltransferase. The inhibition is dependent not only on the concentration of fatty acid, but also on the length of exposure to fatty acid. Both saturated and unsaturated fatty acids inhibit the acyltransferase activities. The inhibitory effects of fatty acids cannot be ascribed to a nonspecific surfactant action of fatty acids. The present results support the view that free fatty acid serves as a regulator of glycerolipid synthesis.  相似文献   

11.
Activation and inhibition of Ca2+-ATPase of calmodulin-depleted human erythrocyte membranes by oleic acid and a variety of other fatty acids have been measured. Low concentrations of oleic acid stimulate the enzyme activity, both in the presence and in the absence of calmodulin. Concomitantly, the affinity of the membrane bound enzyme to calmodulin progressively decreases due to competitive interactions of calmodulin and oleic acid with the enzyme. Removal of oleic acid from the membrane by serum albumin extinguishes the activating effect of oleic acid and restores the ability of the enzyme to bind calmodulin with high affinity. High concentrations of oleic acid induce an almost complete and irreversible loss of enzyme activity which cannot be abolished by removal of oleic acid. Despite a complete loss of enzyme activity, binding of calmodulin to membranes is approximately normal after removal of oleic acid. Activities of (Na+ + K+)-ATPase, Mg2+-ATPase and acetylcholine esterase, as well as the total protein content, show no gross changes upon treatment of membranes with increasing amounts of oleic acid, which seems to exclude that membrane solubilisation by oleic acid causes an inactivation of the enzyme.  相似文献   

12.
Effects of fatty acids on lysis of Streptococcus faecalis.   总被引:6,自引:5,他引:1       下载免费PDF全文
Palmitic, stearic, oleic, and linoleic acids at concentrations of 200 nmol/ml all inhibited autolysin activity 80% or more in whole cells or cell-free extracts. This concentration of the saturated fatty acids palmitic acid and stearic acid had little or no effect on the growth of whole cells or protoplasts. However, the unsaturated fatty acids oleic acid and linoleic acid induced lysis in both situations. This lytic effect is apparently not related to any uncoupling activity or inhibition of energy catabolism by unsaturated fatty acids. It is concluded that unsaturated fatty acids induce cell and protoplast lysis by acting as more potent membrane destabilizers than saturated fatty acids.  相似文献   

13.
We confirmed that, as reported by Sooranna & Saggerson [(1982) Biochem. J. 202, 753-758], the affinity of 6-phosphofructo-1-kinase (PFK) for fructose 6-phosphate in an adipocyte extract was increased after incubation of the cells in the presence of noradrenaline. The participation of fructose 2,6-bisphosphate in this kinetic modification could be excluded, because the noradrenaline effect persisted after extensive gel filtration of the extracts and also because the treatment did not cause any change in the concentration of fructose 2,6-bisphosphate in the adipocytes. Oleic acid was found to be another potent positive effector of PFK in an adipocyte extract, with a Ka of 10 microM. Its effect was synergistic with that of fructose 2,6-bisphosphate and AMP, and was counteracted by serum albumin. Palmitic acid had a similar effect. We conclude that the large increase in fatty acid concentration caused by noradrenaline treatment is an explanation for the activation of phosphofructokinase at low fructose 6-phosphate concentrations in an adipocyte extract.  相似文献   

14.
Addition of adipocyte 100 000 g post-microsomal supernatant to assays of glycerol phosphate acyltransferase in isolated mitochondria or microsomal fractions decreased activity at lower concentrations of palmitoyl-CoA. At higher concentrations of palmitoyl-CoA, activation was observed on addition of post-microsomal supernatant. The effect of post-microsomal supernatant to decrease activity at lower [palmitoyl-CoA] was abolished by heating or by trypsin treatment, and was also abolished by addition of N-ethylmaleimide to assays or by pretreatment of post-microsomal supernatant with N-ethylmaleimide. The stimulatory effect seen at higher [palmitoyl-CoA] was not sensitive to heat or trypsin treatment. The effect of post-microsomal supernatant at lower [palmitoyl-CoA] cannot be attributed to palmitoyl-CoA hydrolase activity. It was found that brief treatment of adipocyte mitochondria with low concentrations of trypsin was an effective way to remove contaminating microsomal glycerol phosphate acyltransferase activity. Adipocyte post-microsomal supernatant was more effective than an equivalent quantity of liver post-microsomal supernatant protein in decreasing adipocyte microsomal glycerol phosphate acyltransferase activity. The effects of the supernatants from both tissues were decreased by flavaspidic acid. Semi-purified Z-protein fraction from rat liver did not mimic the effect of adipocyte post-microsomal supernatant to decrease glycerol phosphate acyltransferase at lower [palmitoyl-CoA]. Post-microsomal supernatants obtained from noradrenaline-treated adipocytes were less effective than those from control cells in decreasing glycerol phosphate acyltransferase activity in microsomal fractions at lower [palmitoyl-CoA]. It is suggested that adipocyte cytosol may contain an acyl-CoA-binding protein or proteins differing from Z-protein in some respects. The physiological significance of the findings is briefly discussed.  相似文献   

15.
The inhibitory effects of three cis-unsaturated C18 fatty acids (oleic, linoleic, and linolenic acids, sodium salts) on ADP- and sodium-arachidonate-induced aggregation of washed rabbit platelets were investigated. When the platelets were suspended in protein-free medium containing dextran, it was found that these fatty acids at very low concentrations (2-45 microM) were potent inhibitors of platelet responsiveness and the inhibitory effect occurred within seconds. The inhibition of ADP-induced aggregation was not affected by abolishing the activity of platelet cyclooxygenase using aspirin. Human serum albumin relieved the inhibition caused by fatty acids for both ADP- and arachidonate-induced aggregation. The inhibitory effect of fatty acids does not seem to be due to decreased thromboxane formation (except possibly in the case of linolenate), and the relief of fatty acid inhibition by albumin does not potentiate thromboxane B2 formation from exogenous arachidonate. It is suggested that the inhibitory effect of polyunsaturated fatty acids on platelet aggregation is specific and not related to a general surfactant effect, since inhibition occurs far below the critical micelle concentration of fatty acid soaps.  相似文献   

16.
The effects of bovine serum albumin on rat pancreatic lipase and bovine milk lipoprotein lipase were studied in a system of triacylglycerol emulsions stabilized by 1 1 mg/ml albumin. At concentrations greater than 1 mg/ml, albumin inhibited the activity of pancreatic lipase and interfered with enzyme binding to emulsified triacylglycerol particles. These effects could be countered by occupying five fatty acid binding sites on albumin with oleic acid. Following an initial lag period which increased with albumin concentrations, enzyme activity escaped from inhibition presumably due to saturation of fatty acid sites on albumin with oleic acid. Pancreatic lipase was active at 1 mg/ml albumin and 1 mM emulsion-bound oleic acid in the system. The effects of albumin on lipoprotein lipase were diametrically opposed to the above; enzyme activity was completely inhibited by 0.1 mM oleic acid, it increased with increasing fatty acid-free albumin concentrations and decreased as the fatty acid sites on albumin were filled. At 1 mM oleic acid and no added albumin the enzyme failed to bind at the oil water interface, whereas fatty acid-free or saturated albumin had no effect on binding. It is concluded that if the inhibition of pancreatic lipase by albumin is due to the inaccessibility of the enzyme to an oil-water interface blocked by denatured albumin, then albumin saturated with oleic acid would seem to be protected from unfolding at the interface and more readily displaced by the lipase. Pancreatic lipase and lipoprotein lipase, although sharing a number of common features, are distinct enzymes both functionally and mechanistically.  相似文献   

17.
A factor in the supernatant fraction of adipose tissue that stimulates the synthesis of triacylglycerols by microsomes has been identified as serum albumin. The stimulatory effect is directly proportional to the ratio of fatty acids bound to the albumin. Small amounts of serum albumin appear to be inside the adipocytes and albumin can be taken up by isolated adipocytes. The rate of uptake of fatty acids by the adipocytes is more than 1000 times the uptake of serum albumin. This difference provides counter-evidence for the proposal that serum albumin might function in the vesicular transport of fatty acids.  相似文献   

18.
Microsomal membrane preparations from rat lung catalyse the incorporation of radioactive linolenic acid from [14C]linolenoyl-CoA into position 2 of sn-phosphatidylcholine. The incorporation was stimulated by bovine serum albumin and free CoA. Free fatty acids in the incubation mixtures were not utilised in the incorporation into complex lipids. Fatty acids were transferred to the acyl-CoA pool during the incorporation of linolenic acid into phosphatidylcholine. An increase in lysophosphatidylcholine occurred in incubations containing both bovine serum albumin and free CoA and in the absence of acyl-CoA. The results were consistent with an acyl-CoA: lysophosphatidylcholine acyltransferase operating in both a forwards and backwards direction and thus catalysing the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine. In incubations with mixed species of acyl-CoAs, palmitic acid was the major fatty acid substrate transferred to phosphatidylcholine in acyl exchange, whereas this acid was completely selected against in the acylation of added lysophosphatidylcholine. The selectivity for palmitoyl-CoA was particularly enhanced when the mixed acyl-CoA substrate was presented to the microsomes in molar concentrations equivalent to the molar ratios of the fatty acids in position 2 of sn-phosphatidylcholine. During acyl exchange, the predominant fatty acid transferred to phosphatidylcholine from acyl-CoA was palmitic acid, whereas arachidonic acid was particularly selected for in the reverse reaction from phosphatidylcholine to acyl-CoA. A hypothesis is presented to explain the differential selectivity for acyl species between the forward and backward reactions of the acyltransferase that is based upon different affinities of the enzyme for substrates at high and low concentrations of acyl donor. Acyl exchange between acyl-CoA and phosphatidylcholine offers, therefore, a possible mechanism for the acyl-remodelling of phosphatidylcholine for the production of lung surfactant.  相似文献   

19.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

20.
The properties of the acyl-CoA:sn-glycerol-3-phosphate O-acyltransferase in a 20,000g particulate fraction from maturing safflower seeds were investigated. The optimum pH of the reaction was 7.2. The apparent Km for glycerophosphate was 0.54 mM. Only monoacylglycerophosphate was accumulated in the particulate fraction under normal conditions. Position 1 of glycerophosphate was exclusively esterified with either palmitoyl-CoA or linoleoyl-CoA as acyl donor, while 2-acylglycerophosphate was the minor product. The specificity and selectivity of the acyltransferase for acyl-CoA were broad and somewhat affected by temperature. The concentration of glycerophosphate did not affect the selectivity. These observations suggested that the fatty acid composition of position 1 of safflower triacylglycerol must primarily depend on the composition of the acyl-CoA pool in the site of synthesis, and that growth temperature and the acyl-CoA selectivity of the glycerophosphate acyltransferase may be rather minor factors regarding regulation of the fatty acid composition of position 1 in triacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号