首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase (TH), tryptophan hydroxylase, phenylalanine hydroxylase, and nitric-oxide synthase. These enzymes synthesize neurotransmitters, e.g. catecholamines, serotonin, and nitric oxide (NO). We established mice unable to synthesize BH4 by disruption of the 6-pyruvoyltetrahydropterin synthase gene, the encoded protein of which catalyzes the second step of BH4 biosynthesis. Homozygous mice were born at the almost expected Mendelian ratio, but died within 48 h after birth. In the brain of homozygous mutant neonates, levels of biopterin, catecholamines, and serotonin were extremely low. The number of TH molecules was highly dependent on the intracellular concentration of BH4 at nerve terminals. Alteration of the TH protein level by modulation of the BH4 content is a novel regulatory mechanism. Our data showing that catecholaminergic, serotonergic, and NO systems were differently affected by BH4 starvation suggest the possible involvement of BH4 synthesis in the etiology of monoamine-based neurological and neuropsychiatric disorders.  相似文献   

2.
An oral glucose challenge causes transient impairment of endothelial function, probably because of increased oxidative stress. During oxidative stress, endothelial nitric oxide (NO) synthase (eNOS) becomes uncoupled because of decreased bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of eNOS. Therefore, we examined whether an acute supplement of BH4 could restore endothelial dysfunction induced by an oral glucose challenge. Healthy subjects were examined in 53 experiments. Forearm blood flow was measured by venous occlusion plethysmography. Dose-response studies were obtained during intra-arterial infusion of serotonin to elicit endothelium-dependent, NO-specific vasodilation and during sodium nitroprusside (SNP) infusion to elicit endothelium-independent vasodilation. Subjects were examined before (fasting) and 1 and 2 h after an oral glucose challenge (75 g) with serotonin (n = 10) and SNP (n = 8). On different days (6R)-5,6,7,8-tetrahydro-l-biopterin dihydrochloride (6R-BH4; n = 10), the active cofactor of eNOS or its stereoisomer (6S)-5,6,7,8-tetrahydro-l-biopterin sulfate (6S-BH4; n = 10), which is inactive as a cofactor, was added 10 min (500 microg/min) before and during the 1-h postchallenge serotonin dose-response study. In vitro studies showed that 6R-BH4 and 6S-BH4 were equipotent antioxidants. Serotonin response was reduced by 24 +/- 7% (at the highest dose) at 1 h postchallenge compared with fasting (P = 0.001) and was restored 2 h postchallenge. The reduction was reversed by the administration of 6R-BH4 but not by 6S-BH4. SNP responses were slightly increased 1 and 2 h postchallenge (increased by 15 +/- 13% at third dose 2 h postchallenge, P = 0.0001). An oral glucose challenge causes transient, NO-specific, endothelial dysfunction, which may be reversed by BH4. Transient postprandial endothelial dysfunction may be partly explained by reduced bioavailability of BH4 and NO.  相似文献   

3.
We have previously reported that intracerebroventricular administration of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH4), a cofactor for tyrosine hydroxylase, enhances biosynthesis of 3,4-dihydroxyphenylethylamine (dopamine) in the rat brain. In the present study, we have more precisely examined the effects of 6R-BH4 on dopamine release in vivo from the rat striatum using brain microdialysis. The amount of dopamine collected in striatal dialysates was determined using HPLC with electrochemical detection after purification with an alumina batch method. When the striatum was dialyzed with Ringer solution containing various concentrations of 6R-BH4 (0.25, 0.5, and 1.0 mM), dopamine levels in striatal dialysates increased in a concentration-dependent manner. Biopterin had little effect on dopamine levels in dialysates. The 6R-BH4-induced increase in dopamine levels in dialysates was abolished after pretreatment with tetrodotoxin (50 microM) added to the perfusion fluid, but after pretreatment with nomifensine (100 mg/kg, intraperitoneal injection), an inhibitor of dopamine uptake mechanism, a larger increase was observed. After inhibition of tyrosine hydroxylase by pretreatment with alpha-methyl-p-tyrosine (250 mg/kg, intraperitoneal injection), most of the increase persisted. These results suggest that 6R-BH4 has a dopamine-releasing action, which is not dependent on biosynthesis of dopamine.  相似文献   

4.
S Knapp  A J Mandell  W P Bullard 《Life sciences》1975,16(10):1583-1593
Using both radioisotopic and fluorometric techniques to measure the activity of midbrain soluble enzyme, we have demonstrated that calcium activates tryptophan hydroxylase. The observed activation apparently results from an increased affinity of the enzyme for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). The calcium activation of tryptophan hydroxylase appears to be specific for both enzyme and effector: other brain neurotransmitter biosynthetic enzymes, such as aromatic amino acid decarboxylase(s) and tyrosine hydroxylase, are not affected by calcium (at concentrations ranging from 0.01 mM to 2.0 mM); other divalent cations, such as Ba++, Mg++, and Mn++, have no activating effect on tryptophan hydroxylase. This work suggests that increases in brain serotonin biosynthesis induced by neural activation may be due to influx of Ca++ associated with membrane depolarization and resulting activation of nerve ending tryptophan hydroxylase.  相似文献   

5.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin-dependent enzyme that catalyzes the hydroxylation of L-phenylalanine (L-Phe) to L-tyrosine using dioxygen as an additional substrate. The requirement of PAH for a cofactor is absolute, but several cofactor analogs are able to substitute the natural cofactor in catalysis. However, it is only the natural cofactor 6R-tetrahydrobiopterin (6R-BH(4)) that induces a negative regulatory effect on the enzyme. In order to get further insights on the molecular basis for this specificity, we studied the structure of the cofactor-enzyme complex and the conformational changes induced by cofactor binding by molecular dynamics simulations. Simulations were carried out on the enzyme alone and complexed with 6R-BH(4) and with two cofactor analogs, 6S-BH(4) and 6-methyl-tetrahydropterin (6M-PH(4)). In the resting unbound enzyme Tyr377 in the catalytic domain is hydrogen bonded to both Ser23 and Glu21 of the autoregulatory N-terminal sequence. This hydrogen bonding network is disturbed by the binding of BH(4), which interacts with Ser23. By doing so, 6R-BH(4) facilitates an interaction between Glu21 and the active site iron, further pulling the N-terminal into the active site of PAH and blocking the L-Phe binding site. Thus, in the 6R-BH(4) complexed enzyme, the N-terminal functions as an intrinsic amino acid regulatory sequence (IARS). Neither 6M-PH(4) nor 6S-BH(4) can interact favorably with Ser23, and do not induce an inhibitory effect on PAH. These simulations thus explain the previous findings that the two hydroxyl groups in the side chain of the 6R epimer of BH(4) are essential for the inhibitory regulatory effect on PAH.  相似文献   

6.
M Sawada  Y Hirata  M Minami  T Nagatsu 《Life sciences》1987,41(25):2733-2737
The effects of subchronic administration of thyrotropin releasing hormone (TRH) and its analogue, gamma-butyrolactone-gamma-carbonyl-L-histidyl-L-prolinamide citrate (DN 1417), on serotonin biosynthesis in situ were investigated in tissue slices of the midbrain raphe of rats. TRH or DN 1417 (10 mg/kg per day intraperitoneally) were administered to male Wistar rats for ten days. At twenty four hr after the last injection, tissue slices of the midbrain raphe were prepared and the rate of serotonin biosynthesis was estimated by measuring formation of 5-hydroxytryptophan (5-HTP) from tryptophan during inhibition of aromatic L-amino acid decarboxylase using high-performance liquid chromatography with fluorescence detection. Total biopterin content was determined by a specific radioimmunoassay. 5-HTP formation was decreased 22% and 29%, and total biopterin content 69% and 72%, in TRH- and DN 1417-treated rats, respectively. However, tryptophan concentration in raphe slices did not change. In contrast, the Vmax of tryptophan hydroxylase in the homogenate of the raphe nucleus in the presence of a saturating concentration of (6R)-L-erythro-tetrahydrobiopterin, the naturally occurring pterin cofactor, was significantly increased after repeated administration of TRH or DN 1417. These results indicate that reduction of in situ serotonin biosynthesis in tissue slices from the rats treated with TRH or DN 1417 subchronically contray to the increase in in vitro tryptophan hydroxylase may result from the decrease of the biopterin cofactor, and that changes in concentrations of the biopterin cofactor may play a regulatory role in serotonin biosynthesis in vivo under certain conditions.  相似文献   

7.
Allostery of tyrosine hydroxylase was found by kinetical studies of partially purified tyrosine hydroxylase from clonal rat pheochromocytoma PC12h cells. Positive cooperativity toward the cofactors, (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6R)BH4] and (6S)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6S)BH4], was observed. It is indicated that biopterin might be the regulatory factor of the enzyme polymers, which changes the affinity for the cofactor itself. Moreover, the stereochemical structure of (6R)BH4, the naturally-occurring cofactor, took an important role on the kinetical properties of the enzyme in concern with L-tyrosine.  相似文献   

8.
By the use of the brain micro-dialysis technique combined with HPLC, the changes in the extracellular levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and a serotonin(5-HT) metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were examined in the rat striatum before and after intracerebral injection of a vehicle or (6R)-l-erythro-tetrahydrobiopterin (6R-BH4), the natural form of the cofactor for the tryrosine hydroxylase and tryptophan hydroxylase. No apparent change after the 6R-BH, treatment was found in the levels of DA, DOPAC, HVA and 5-HIAA in the striatal dialysate. In contrast, the levels of total biopterin in both the operated (dialysis probe-implanted) and unoperated striatum of 6R-BH4-treated rats increased by 23- and 93-fold, respectively, when compared with those of the control, vehicle-treated rats. The results indicate that increased levels of the tetrahydrobiopterin cofactor may not affect the release of DA and the extracellular level of DA and 5-HT metabolites in the physiologically normal brain.  相似文献   

9.
We have examined the interaction of hepatic phenylalanine hydroxylase with the phenylalanine analogs, tryptophan and the diastereomers of 3-phenylserine (beta-hydroxyphenylalanine). Both isomers of phenylserine are substrates for native phenylalanine hydroxylase at pH 6.8 and 25 degrees C, when activity is measured with the use of the dihydropteridine reductase assay coupled with NADH in the presence of the synthetic cofactor, 6-methyl-5,6,7,8-tetrahydropterin. However, while erythro-phenylserine exhibits simple Michaelis-Menten kinetics (Km = 1.2 mM, Vmax = 1.2 mumol/min X min) under these conditions, the threo isomer exhibits strong positive cooperativity (S0.5 = 4.8 mM Vmax = 1.4 mumol/min X mg, nH = 3). Tryptophan also exhibits cooperativity under these conditions (S0.5 = 5 mM, Vmax = 1 mumol/min X mg, nH = 3). The presence of 1 mM lysolecithin results in a hyperbolic response of phenylalanine hydroxylase to tryptophan (Km = 4 mM, Vmax = 1 mumol/min X mg) and threo-phenylserine (Km = 2 mM, Vmax = 1.4 mumol/min X mg). erythro-Phenylserine is a substrate for native phenylalanine hydroxylase in the presence of the natural cofactor, L-erythro-tetrahydrobiopterin (BH4) (Km = 2 mM, Vmax 0.05 mumol/min X mg, nH = 2). Preincubation of phenylalanine hydroxylase with erythro-phenylserine results in a 26-fold increase in activity upon subsequent assay with BH4 and erythro-phenylserine, and hyperbolic kinetic plots are observed. In contrast, both threo-phenylserine and tryptophan exhibit negligible activity in the presence of BH4 unless the enzyme has been activated. The product of the reaction of phenylalanine hydroxylase with either isomer of phenylserine was identified as the corresponding p-hydroxyphenylserine by reaction with sodium periodate and nitrosonaphthol. With erythro-phenylserine, the hydroxylation reaction is tightly coupled (i.e. 1 mol of hydroxyphenylserine is formed for every mole of tetrahydropterin cofactor consumed), while with threo-phenylserine and tryptophan the reaction is largely uncoupled (i.e. more cofactor consumed than product formed). Erythro-phenylserine is a good activator, when preincubated with phenylalanine hydroxylase (A0.5 = 0.2 mM), with a potency about one-third that of phenylalanine (A0.5 = 0.06 mM), while threo-phenylserine (A0.5 = 6 mM) and tryptophan (A0.5 approximately 10 mM) are very poor activators. Addition of 4 mM tryptophan or threo-phenylserine or 0.2 mM erythro-phenylserine to assay mixtures containing BH4 and phenylalanine results in a dramatic increase in the hydroxylation at low concentrations of phenylalanine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Enzymatically active mouse tyrosine hydroxylase (TH) was successfully expressed at a high level in Escherichia coli using a T7 RNA polymerase directed expression system. The specific activity of mouse TH in E. coli cell lysate was 7.5 nmol/mg protein/min. Kinetic characteristics of recombinant TH were examined. Km for tyrosine and (6R)-tetrahydrobiopterin (6R-BH4) cofactor were determined to be 7.2 microM (420 microM 6R-BH4), 19 microM [( 6R-BH4] less than 55 microM, 20 microM tyrosine) and 54 microM [( 6R-BH4] greater than 55 microM, 20 microM tyrosine), respectively. These were in good agreement with previously reported values for this enzyme.  相似文献   

11.
The effects of amphetamine (amph) and high K+ on the synthesis and release of dopamine (DA) were compared in striatal slices. Both agents stimulated DA synthesis as well as release. For both agents, Ca2+ was required for the initiation of synthesis stimulation as well as for the maintenance of this stimulation. The addition of EGTA to medium containing slices that were already stimulated by 1.0 microM-amph or 55 mM-K+ markedly reduced the stimulation of DA synthesis. Although it has been reported that high K+ activates soluble tyrosine hydroxylase (TH), neither high K+ nor amph appeared to increase the affinity of the synthetic cofactor, 6-MPH4, or decrease the affinity of the catechol, DA, for TH. This finding was supported by the observation that the inhibitory effect of L-DOPA on DA synthesis in slices, in which synthesis was stimulated by either agent, was not decreased. Although both 1.0 microM-amph and 55 mM-K+ stimulated the release of [3H]DA from striatal slices, the release produced by K+ was Ca2+-dependent, whereas release produced by amph did not occur at any concentration tested. Studies on pH requirements for both synthesis and release also confirmed a similarity between amph and K+ in stimulating synthesis but not in stimulating release. These results suggest that depolarizing agents, such as high K+, couple synthesis and release of DA by a Ca2+-dependent mechanism. In contrast, the simultaneous stimulation of synthesis and release by amph is not regulated by Ca2+.  相似文献   

12.
Abstract— The activity of soluble tryptophan hydroxylase from rat brain stem was increased in presence of mm concentrations of calcium. Similarly to that observed by treating the enzyme with sodium dodecyl sulphate or trypsin, this activation resulted mainly from an increased affinity of tryptophan hydroxylase for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). In addition, the optimal pH for the enzymic activity was shifted from 7.6 to 7.9 following activation by calcium, sodium dodecyl sulphate or trypsin.
Under the assay conditions used for measuring tryptophan hydroxylase activity, calcium also stimulated a neutral proteinase. This latter enzyme could be eliminated from the solution of tryptophan hydroxylase by filtration through Sephadex G 200. The resulting partially purified tryptophan hydroxylase could be activated by calcium only when the neutral proteinase was included in the assay mixture. In support of this conclusion, the effect of calcium on tryptophan hydroxylase was very small in the new born rat when the activity of the neutral proteinase was low. In addition, the activating effect of Ca2+ could be antagonized not only by a chelating agent like EGTA but also (partially) by specific inhibitors of proteinases such as benzethonium and PMSF.
These results strongly suggest that the activation of tryptophan hydroxylase by calcium is the consequence of a partial proteolysis of the enzyme by the calcium-dependent neutral proteinase. Therefore, the physiological significance of this irreversible effect is doubtful.  相似文献   

13.
1. Phenylalanine hydroxylase activity has been analyzed in Drosophila melanogaster using as cofactors the natural tetrahydropteridine 5,6,7,8-tetrahydrobiopterin (H4Bip) and the synthetic one 5,6-dimethyl-5,6,7,8-tetrahydropterin (H4Dmp). 2. The apparent Vmax and KM for substrate and cofactor showed that the enzyme has two times more affinity for the substrate when H4Bip is the cofactor in the reaction. Similarly to what was found with purified rat liver phenylalanine hydroxylase, H4Bip was the most effective cofactor, leading to 4-5 times more activity than that obtained with H4Dmp. 3. With the natural cofactor H4Bip, no activation of the enzyme with Phe was necessary (in contrast to mammalian phenylalanine hydroxylase), and this tetrahydropteridine inhibits phenylalanine hydroxylase activity when the enzyme is exposed to it before phenylalanine addition. With the synthetic H4Dmp, both types of preincubations led to an increase of phenylalanine hydroxylase activity. 4. The enzyme is highly unstable compared to mammalian phenylalanine hydroxylase, even at -20 degrees C. 5. Thorax and abdomen extracts caused significant inhibition of phenylalanine hydroxylase activity from third instar larvae or newborn adult head extracts, when assayed with the synthetic cofactor H4Dmp. This inhibition did not happen with H4Bip. The presence of the pteridine 7-xanthopterin in adult bodies was not the cause of this inhibition.  相似文献   

14.
The role of the serotonin uptake carrier in the methamphetamine-induced depression of serotonin synthesis was examined. In vivo, coadministration of citalopram or chlorimipramine with methamphetamine blocked the irreversible depression of tryptophan hydroxylase activity observed in the neostriatum and cerebral cortex after repeated administration of high doses of methamphetamine. The methamphetamine-induced reduction of neostriatal serotonin and 5-hydroxyindoleacetic acid was also attenuated by the two uptake inhibitors. In contrast, neither drug antagonized the depression of neostriatal tyrosine hydroxylase activity observed after methamphetamine administration. Citalopram also blocked the reversible inhibition of tryptophan hydroxylase activity observed after the acute administration of methamphetamine. In vitro, citalopram significantly inhibited methamphetamine-induced [3H] serotonin release from neostriatal slices. The results demonstrate that inhibitors of the serotonin uptake carrier can antagonize both the in vivo and in vitro effects of methamphetamine on serotonergic neurons. Furthermore, the methamphetamine-induced depression of serotonin synthesis is dependent upon a functional serotonin uptake system.  相似文献   

15.
Tetrahydrobiopterin (BH4) is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GCH), 6-pyruvoyltetrahydropterin synthase (PTS), and sepiapterin reductase (SPD). GCH is the rate-limiting enzyme. BH4 is a cofactor for three pteridine-requiring monooxygenases that hydroxylate aromatic L-amino acids, i.e., tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and phenylalanine hydroxylase (PAH), as well as for nitric oxide synthase (NOS). The intracellular concentrations of BH4, which are mainly determined by GCH activity, may regulate the activity of TH (an enzyme-synthesizing catecholamines from tyrosine), TPH (an enzyme-synthesizing serotonin and melatonin from tryptophan), PAH (an enzyme required for complete degradation of phenylalanine to tyrosine, finally to CO2 + H2O), and also the activity of NOS (an enzyme forming NO from arginine), Dominantly inherited hereditary progressive dystonia (HPD), also termed DOPA-responsive dystonia (DRD) or Segawa's disease, is a dopamine deficiency in the nigrostriatal dopamine neurons, and is caused by mutations of one allele of the GCH gene. GCH activity and BH4 concentrations in HPD/DRD are estimated to be 2-20% of the normal value. By contrast, recessively inherited GCH deficiency is caused by mutations of both alleles of the GCH gene, and the GCH activity and BH4 concentrations are undetectable. The phenotypes of recessive GCH deficiency are severe and complex, such as hyperphenylalaninemia, muscle hypotonia, epilepsy, and fever episode, and may be caused by deficiencies of various neurotransmitters, including dopamine, norepinephrine, serotonin, and NO. The biosynthesis of dopamine, norepinephrine, epinephrine, serotonin, melatonin, and probably NO by individual pteridine-requiring enzymes may be differentially regulated by the intracellular concentration of BH4, which is mainly determined by GCH activity. Dopamine biosynthesis in different groups of dopamine neurons may be differentially regulated by TH activity, depending on intracellular BH4 concentrations and GCH activity. The nigrostriatal dopamine neurons may be most susceptible to a partial decrease in BH4, causing dopamine deficiency in the striatum and the HPD/DRD phenotype.  相似文献   

16.
Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.  相似文献   

17.
H13/04, an audiogenic seizure-inducing catecholamide, has previously been demonstrated to decrease the accumulation of 5-hydroxytryptophan (5-HTP), while increasing the accumulation of dihydroxyphenylalanine (DOPA) after aromatic acid decarboxylase inhibition in vivo. The present study examined the effect of H13/04 on intracellular storage, release, and metabolism of serotonin (5-HT) and noradrenaline (NA) in vitro in order to differentiate between the primary effects of the drug and possible secondary effects due to neurotransmitter interaction. H13/04 had no effect on NA synthesis by brain minces from C57BL/6 mice, but did have a marked effect on [3H]5HT synthesis from [3H]tryptophan in mouse brain minces. H13/04 was subsequently shown to competitively inhibit tryptophan hydroxylase. The data presented in this study indicate that the primary action of H13/04 on biogenic amines is to decrease the synthesis rate of 5-HT by competitive inhibition of tryptophan hydroxylase. The lack of any effect on NA in vitro is consistent with the hypothesis that the primary biochemical action of the drug is on the 5-HT system and that the action on NA in vivo is an indirect effect possibly secondary to the inhibition of 5-HT synthesis.  相似文献   

18.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by the nitric oxide generators sodium nitroprusside, diethylamine/nitric oxide complex, and S -nitroso- N -acetylpenicillamine. Physiological concentrations of tetrahydrobiopterin, the natural and endogenous cofactor for the hydroxylase, significantly enhance the inactivation of the enzyme caused by each of these nitric oxide generators. The substrate tryptophan does not have this effect. The chemically reduced (tetrahydro-) form of the pterin is required for the enhancement, because neither biopterin nor dihydrobiopterin is effective. The 6 S -isomer of tetrahydrobiopterin, which has little cofactor efficacy for tryptophan hydroxylase, does not enhance enzyme inactivation as does the natural 6 R -isomer. A number of synthetic, reduced pterins share with tetrahydrobiopterin the ability to enhance nitric oxide-induced inactivation of tryptophan hydroxylase. The tetrahydrobiopterin effect is not prevented by agents known to scavenge hydrogen peroxide, superoxide radicals, peroxynitrite anions, hydroxyl radicals, or singlet oxygen. On the other hand, cysteine partially protects the enzyme from both the nitric oxide-induced inactivation and the combined pterin/nitric oxide-induced inactivation. These results suggest that the tetrahydrobiopterin cofactor enhances the nitric oxide-induced inactivation of tryptophan hydroxylase via a mechanism that involves attack on free protein sulfhydryls. Potential in vivo correlates of a tetrahydrobiopterin participation in the inactivation of tryptophan hydroxylase can be drawn to the neurotoxic amphetamines.  相似文献   

19.
It has been recognised that the active transport of L-phenylalanine and its autocrine turnover to L-tyrosine via phenylalanine hydroxylase in the cytosol of epidermal melanocytes provides the majority of the L-tyrosine pool for melanogenesis. In this context, it has been shown that the cofactor 6(R)-L-erythro 5,6,7,8 tetrahydrobiopterin (6BH4) is produced de novo, recycled and regulated in both epidermal melanocytes and keratinocytes to control tyrosine hydroxylase, phenylalanine hydroxylase and tyrosinase activity. Inhibition of the enzymes by excessive 6BH4 levels is reversible with alpha-MSH by specific complex formation between 6BH4 and the hormone. This direct mechanism of alpha-MSH is supported by the presence of the entire POMC processing system in the melanosome indicating a receptor independent control of eumelanogenesis. Finally, the role of tyrosinase, TRP-1 and TRP2 is discussed in association with oxidative stress specifically related to hydrogen peroxide. These recent findings are based on detailed investigations of the depigmentation disorder vitiligo and Hermansky-Pudlák syndrome.  相似文献   

20.
Inactivation of tyrosine hydroxylase by reduced pterins   总被引:1,自引:0,他引:1  
Tyrosine hydroxylase [E.C. 1.14.16.2] is inactivated by incubation with its reduced pterin cofactors L-erythro-tetrahydrobiopterin, 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropterin and 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropterin. Each of the two diastereoisomers of L-erythro-tetrahydrobiopterin inactivates tyrosine hydroxylase but the natural (6R) form is much more potent than the unnatural (6S) form at equimolar concentrations. The pterin analog 6-methyl-5-deazatetrahydropterin, which has no cofactor activity, also inactivates the enzyme whereas the oxidized pterins 7,8 dihydrobiopterin and biopterin do not. The inactivation process is both temperature and time dependent and results in a reduction of the Vmax for both tetrahydrobiopterin and tyrosine. Neither tyrosine nor oxygen inactivates tyrosine hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号