首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of two yeast strains to utilize the lactose in whey permeate has been studied. Kluyveromyces marxianus NCYC 179 completely utilized the lactose (9.8%), whereas Saccharomyces cerevisiae NCYC 240 displayed an inability to metabolize whey lactose for ethanol production. Of the two gel matrices tested for immobilizing K. marxianus NCYC 179 cells, sodium alginate at 2% (w/v) concentration proved to be the optimum gel for entrapping the yeast cells effectively. The data on optimization of physiological conditions of fermentation (temperature, pH, ethanol concentration and substrate concentration) showed similar effects on immobilized and free cell suspensions of K. marxianus NCYC 179, in batch fermentation. A maximum yield of 42.6 g ethanol l?1 (82% of theoretical) was obtained from 98 g lactose l?1 when fermentation was carried at pH 5.5 and 30°C using 120 g dry weight l?1 cell load of yeast cells. These results suggest that whey lactose can be metabolized effectively for ethanol production using immobilized K. marxianus NCYC 179 cells.  相似文献   

2.
Summary Immobilized yeast was encapsulated with cell-free calciumalginate gel by two-step preparation procedure. The volume of coated film decreased with increasing cell concentration. The encapsulation did not affect ethanol production and could prevent cell leakage from the gels.  相似文献   

3.
Microporous-membrane-based extractive product recovery in product-inhibited fermentations allows in situ recovery of inhibitory products in a nondispersive fashion. A tubular bioreactor with continuous strands of hydrophobic microporous hollow fibers having extracting solvent flowing in fiber lumen was utilized for yeast fermentation of glucose to ethanol. Yeast was effectively immobilized on the shell side in small lengths of chopped microporous hyrophilic hollow fibers. The beneficial effects of in situ dispersion-free solvent ex (oleyl alcohol and dibutyl phthalate) were demonstrated for a 300 g/L glucose substrate feed. Outlet glucose concentration dropped drastically from 123 to 41 g/L as solvent/ substrate flow ratio was increased from 0 to 3 at 9 mL/h of substrate flow rate with oleyl alcohol as extracting solvent. The significant productivity increase with in situ solvent extraction became more evident as solvent/ substrate flow ratio increased. A model of the locally integrated extractive bioreactor describes the observed fermentor performance quite well.  相似文献   

4.
The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 ± 1.86 g/l, an optimal ethanol concentration of 87.91 ± 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h.  相似文献   

5.
The capabilities of immobilized Fusarium oxysporum f. sp. lini, Mucor sp., and Saccharomyces cerevisiae in fermenting pentose to ethanol have been compared. S. cerevisiae was found to have the best fermentation rate on d-xylulose of 0.3 g l?1 h?1. By using a separate isomerase column for converting d-xylose to d-xylulose and a yeast column for converting d-xylulose to ethanol, an ethanol concentration of 32 g l?1 was obtained from 10% d-xylose. The ethanol yield was calculated to be 64% of the theoretical yield.  相似文献   

6.
Summary Cells ofSaccharomyces cerevisiae ATCC 4126, immobilized within the macroporous walls of asymmetric hollow-fiber membranes, were alternately perfused with 10% glucose complex medium and with 10% glucose defined medium which was deficient in nitrogen. Using complex growth medium, ethanol productivities during the initial 10 h of culture attained a maximum level of 133 g/l-h based on the total fiber volume (3% ethanol). Productivities during nitrogen deficiency stabilized at 10 g/l-h (0.5 ethanol). In subsequent growth phases, ethanol production rates increased to levels 40–70% of initial growth-phase values, but the ability to regenerate the fermentation activity decreased with culture age. During nitrogen deficiency, the fermentation efficiency declined with a concomitant reduction in the total protein concentration of immobilized cells within the hollow-fiber membranes. The molar ratio of acetaldehyde to ethanol increased seven-fold during nitrogen deficiency, indicating that the overall decline in glycolytic activity was accompanied by preferential reduction in alcohol dehydrogenase activity. The molar ratio of glycerol to ethanol increased two-fold during nitrogen deficiency, and large lipid-like droplets accumulated within the nitrogen-deficient cells. In addition to these findings, we conclude that current hollow-fiber membrane reactors should be limited to cell cultures having low growth rates, low O2 requirements, and low CO2 production rates.  相似文献   

7.
Summary The aim of this study was to find the conditions necessary for the continuous butanol production from whey permeate with Clostridium beyerinckii LMD 27.6, immobilized in calcium alginate beads. The influence of three parameters on the butanol production was investigated: the fermentation temperature, the dilution rate (during start-up and at steady state) and the concentration of calcium ions in the fermentation broth. It was found that both a fermentation temperature of 30° C and a dilution rate of 0.1 h-1 or less during the start-up phase are required to achieve continuous butanol production from whey permeate. Butanol can be produced continuously from whey permeate in reactor productivities sixteen times higher than those found in batch cultures with free C. beyerinckii cells on whey media.  相似文献   

8.
Two matrices have been assessed for their ability to immobilize Lactobacillus casei cells for lactic acid fermentation in whey permeate medium. Agar at 2% concentration was found to be a better gel than polyacrylamide in its effectiveness to entrap the bacterial cells to carry out batch fermentation up to three repeat runs. Of the various physiological parameters studied, temperature and pH were observed to have no significant influence on the fermentation ability of the immobilized organism. A temperature range of 40–50°C and a pH range of 4.5–6.0 rather than specific values, were found to be optimum when fermentation was carried out under stationary conditions. In batch fermentation ~90% conversion of the substrate (lactose) was achieved in 48 h using immobilized cell gel cubes of 4 × 2 × 2 mm size, containing 400 mg dry bacterial cells per flask and 4.5% w/v (initial) whey lactose content as substrate. However, further increase in substrate levels tested (>4.5% w/v) did not improve the process efficiency. Supplementation of Mg2+ (1 mM) and agricultural by-products (mustard oil cake, 6%) in the whey permeate medium further improved the acid production ability of the immobilized cells under study.  相似文献   

9.
A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 ± 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.  相似文献   

10.
Partial substitution of sugarcane molasses by cheese whey in the fed-batch production of baker's yeast was evaluated. A sugar feeding profile based in a commercial process and different modes of addition of -galactosidase were used. Molasses substitution of 46%, in terms of sugar fed to the bioreactor, was reached and no significant differences in biomass volumetric productivity, by-products yields, and baking quality were observed. However the biomass yield was 6% lower.  相似文献   

11.
Summary Candida pseudotropicalis ATCC 8619 was selected among nine strains of lactose-fermenting yeasts on the basis of its ability to ferment concentrated whey. In 28% (wt/vol) deproteinized whey solutions it produced an average of 12.4% (vol/vol) ethanol. This yeast could be used in a process for whey treatment.  相似文献   

12.
We demonstrate direct ethanol fermentation from amorphous cellulose using cellulase-co-expressing yeast. Endoglucanases (EG) and cellobiohydrolases (CBH) from Trichoderma reesei, and β-glucosidases (BGL) from Aspergillus aculeatus were integrated into genomes of the yeast strain Saccharomyces cerevisiae MT8-1. BGL was displayed on the yeast cell surface and both EG and CBH were secreted or displayed on the cell surface. All enzymes were successfully expressed on the cell surface or in culture supernatants in their active forms, and cellulose degradation was increased 3- to 5-fold by co-expressing EG and CBH. Direct ethanol fermentation from 10 g/L phosphoric acid swollen cellulose (PASC) was also carried out using EG-, CBH-, and BGL-co-expressing yeast. The ethanol yield was 2.1 g/L for EG-, CBH-, and BGL-displaying yeast, which was higher than that of EG- and CBH-secreting yeast (1.6 g/L ethanol). Our results show that cell surface display is more suitable for direct ethanol fermentation from cellulose.  相似文献   

13.
In this article, a mathematical model describing the kinetics of ethanol fermentation in a whole cell immobilized tubular fermentor is proposed. Experimental results show reasonable agreement with the proposed model. A procedure for treating the fermentation data for determining the ethanol inhibition constants k(1) and k(2) is described. The ethanol productivity of the immobilized cell fermentor is compared with those of traditional fermentors. Experimental studies indicate that with Saccharomyces cerevisiae (NRRL Y132) culture, ethanol productivity in the range 21.2-83.7 g ethanol L(-1) h(-1) at ethanol concentration of 76-60 g/L can be achieved. This is comparable to or higher than those reported in the literature for yeast. The product yield factor of 0.5 g ethanol/g glucose was obtained. The immobilized cell fermentor does not show washout at dilution rates of 7 h(-1) and shows good stability over a 650-h operating period.  相似文献   

14.
Lactic acid production from salt whey using free and agar immobilized cells   总被引:2,自引:0,他引:2  
Salt whey was examined as a substrate for lactic acid production by Lactobacillus casei in conventional and immobilized cell batch systems. In cell suspension systems this strain was not able to metabolize lactose in the presence of salt concentrations much above 4%. However, the entrapment of cells in 2% agar substantially improved their activity and allowed slow metabolism even in the presence of 8% salt. The agar matrix retained its structure and dimensional stability during 168 h in salt medium.  相似文献   

15.
Summary Fed-batch fermentation of non-supplemented concentrated whey permeate resulted in high ethanol productivity for feeds of lactose for which batch fermentation had a poor performance. At an initial lactose concentration of 100 g/L and a constant lactose feeding rate of 18 g/h we have obtained: ethanol concentration 64 g/L, ethanol productivity 3.3 g/Lh, lactose consumption 100%, ethanol yield 0.47 g/g, and biomass yield 0.058 g/g.Nomenclature St total lactose fed per medium volume in the bioreactor, g/L - Si initial lactose concentration, g/L - F lactpse feeding rate, g/h - P final ethanol concentration, g/L - Yp/s ethanol yield, g ethanol/g lactose - Yx/s biomass yield, g biomass/g lactose - XS lactose consumption, % - Qp overall ethanol volumetric productivity, g/Lh - m maximum specific growth rate, h - qsm maximum specific lactose consumption rate, g/gh - qpm maximum specific ethanol production rate, g/gh  相似文献   

16.
Summary Saccharomyces cerevisiae was immobilized in calcium alginate gel together with varying concentrations of iron oxide, in the form of magnetite or a colloidal ferrite suspension, Ferrofluid. Inclusion of magnetic material apparently had no adverse effect on the yeast cells as judged from their fermentation capacity, their operational stability as well as their ability to propagatein situ in the presence of nutrients. The usefulness of magnetic preparations in viscous or particle containing media is discussed.  相似文献   

17.
The production of ethanol from cheese whey lactose has been demonstrated using a single-stage continuous culture fermentation with 100% cell recycle. In a two-step process, an aerobic fed batch operation was used initially to allow biomass buildup in the absence of inhibitory ethanol concentrations. In the anaerobic ethanol-producing second step, a strain of Kluyveromyces fragilis selected on the basis of batch fermentation data had a maximum productivity of 7.1 g ethanol/L/h at a dilution rate of 0.15 h(-1), while achieving the goal of zero residual sugar concentration. The fermentation productivity diminished when the feed sugar concentation exceeded 120 g/L despite the inclusion of a lipid mixture previous shown to enhance batch fermentation productivities.  相似文献   

18.
Recycle batch fermentations using immobilized cells of Propionibacterium acidipropionici were studied for propionate production from whey permeate, de-lactose whey permeate, and acid whey. Cells were immobilized in a spirally wound fibrous sheet packed in a 0.5-L column reactor, which was connected to a 5-L stirred tank batch fermentor with recirculation. The immobilized cells bioreactor served as a breeder for these recycle batch fermentations. High fermentation rates and conversions were obtained with these whey media without nutrient supplementation. It took approximately 55 h to ferment whey permeate containing approximately 45 g/L lactose to approximately 20 g/L propionic acid. Higher propionate concentrations can be produced with various concentrated whey media containing more lactose. The highest propionic acid concentration obtained with the recycle batch reactor was 65 g/L, which is much higher than the normal maximum concentration of 35 to 45 g/L reported in the literature. The volumetric productivity ranged from 0.22 g/L . h to 0.47 g/L . h, depending on the propionate concentration and whey medium used. The corresponding specific cell productivity was 0.033 to 0.07 g/L . g cell. The productivity increased to 0.68 g/L . h when whey permeate was supplemented with 1% (w/v) yeast extract. Compared with conventional batch fermentation, the recycle batch fermentation with the immobilized cell bioreactor allows faster fermentation, produces a higher concentration of product, and can be run continually without significant downtime. The process also produced similar fermentation results with nonsterile whey media. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
Summary Columnar reactors containing immobilized cells of Zymomonas mobilis were utilized for the continuous production of ethanol from glucose. Two different immobilization strategies were investigated. In one case, cells were entrapped in borosilicate glass fiber pads, while in the other, cells were immobilized via flocculation. The reactors were operated in both the fixed-bed and expanded-bed manner. Ethanol productivities as high as 132 g/l·h were achieved. Data obtained from studies employing 5.0 and 10.0% glucose concentrations are presented. Problems encountered during the operation of the continuous, immobilized cell reactors are discussed.Operated by Union Carbide Corporation under contract W-7405-eng-26 with the U.S. Department of Energy.  相似文献   

20.
Summary Saccharomyces cerevisiae yeast immobilized in calcium alginate gel beads was employed in packed-bed column reactors for continuous ethanol production from glucose or cane molasses, and for beer fermentation from barley malt wort. With properly balanced nutrient content or periodical regeneration of cells by nutrient addition and aeration, ethanol production could be maintained for several months. About 7 percent (w/v) ethanol content could be easily maintained with cane molasses diluted to about 17.5 percent (w/v) of total reducing sugars at about 4 to 5 h residence time. Beer of up to 4.5 percent (wv) of ethanol could be produced from barley wort at about 2 h residence time without any addition of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号