首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Summary The thermotolerant yeast, Kluyveromyces marxianus IMB3 produced 11g ethanol/l during growth at 45°C on media containing 4% (w/v) lactose when immobilized in alginate beads whereas the free cells produced 5g ethanol/l. A magnetically responsive biocatalyst, prepared by incorporating Fe3O4 into the alginate matrix increased ethanol production to 12g/l in batch-fed reactors. Ethanol concentrations were further increased to a maximum of 18g/l by immobilization of the endogenous K. marxianus -galactosidase to the Fe3O4 particles prior to inclusion into the alginate matrix. Maximum ethanol productivity by the system was 87% of the maximum theoretical yield.  相似文献   

2.
The ability of two yeast strains to utilize the lactose in whey permeate has been studied. Kluyveromyces marxianus NCYC 179 completely utilized the lactose (9.8%), whereas Saccharomyces cerevisiae NCYC 240 displayed an inability to metabolize whey lactose for ethanol production. Of the two gel matrices tested for immobilizing K. marxianus NCYC 179 cells, sodium alginate at 2% (w/v) concentration proved to be the optimum gel for entrapping the yeast cells effectively. The data on optimization of physiological conditions of fermentation (temperature, pH, ethanol concentration and substrate concentration) showed similar effects on immobilized and free cell suspensions of K. marxianus NCYC 179, in batch fermentation. A maximum yield of 42.6 g ethanol l?1 (82% of theoretical) was obtained from 98 g lactose l?1 when fermentation was carried at pH 5.5 and 30°C using 120 g dry weight l?1 cell load of yeast cells. These results suggest that whey lactose can be metabolized effectively for ethanol production using immobilized K. marxianus NCYC 179 cells.  相似文献   

3.
A mathematical model describing the kinetics of continuous production of single cell protein from cheese whey using Kluyveromyces fragilis was developed from the basic principles of mass balance. The model takes into account the substrate utilization for growth and maintenance and the effect of substrate concentration and cell death rate on the net cell growth and substrate utilization during the fermentation process. A lactose concentration below 1.91 g/L limited growth of yeast cells whereas a lactose concentration above 75 g/L inhibited the growth of the yeast. The model was tested using experimental data obtained from a continuous system operated at various retention times (12, 18 and 24 h), mixing speeds (200, 400 and 600 rpm) and air flow rates (1 and 3 vvm). The model was capable of predicting the effluent cell and substrate concentrations with R2 ranging from 0.95 to 0.99. The viable cell mass and lactose consumption ranged from 1.3 to 34.3 g/L and from 74.31% to 99.02%, respectively. A cell yield of 0.74 g cell/g lactose (close to the stoichiometric value of 0.79 g cell/g lactose) was achieved at the 12 h retention time-3 vvm air flow rate-600 rpm mixing speed combination. The total biomass output (viable and dead cells) at this combination was 37 g/L.  相似文献   

4.
Summary Wild-type strains ofZymomonas mobilis have a limited substrate range of glucose, fructose and sucrose. In order to expand this substrate range, transconjugants ofZ. mobilis containing Lac+ plasmids have been constructed. Although -galactosidase is expressed in such strains, they lack the ability to grow on lactose. We now report the development ofZ. mobilis strains capable of growth on lactose. This was achieved in two stages. First, a broad host range plasmid was constructed (pRUT102) which contained the lactose operon under the control of aZ. mobilis promoter plus genes for galactose utilization.Z. mobilis CP4.45 containing pRUT102 was then subjected to mutagenesis combined with continued selection pressure for growth on lactose. One strain,Z. mobilis SB6, produced a turbid culture that yielded 0.25% ethanol from 5% lactose (plus 2% yeast extract) in 15 days.  相似文献   

5.
Kluyveromyces fragilis immobilized in calcium alginate gel was compared to Saccharomyces cerevisiae coimmobilized with beta-galactosidase, for continuous ethanol production from whey permeate in packed-bed-type columns. Four different whey concentrations were studied, equivalent to 4.5, 10, 15, and 20% lactose, respectively. In all cases the coimmobilized preparation produced more ethanol than K. fragilis. The study went on for more than 5 weeks. K. fragilis showed a decline in activity after 20 days, while the coimmobilized preparation was stableduring the entrire investigation. Under experimental conditions theoretical yields of ethanol were obtained from 4.5 and 10% lactose substrates with the coimmobilized system. Using 15% lactose substrate, theoretical yields were only obtained when a galactose-adapted immobilized S. cerevisiae column was run in series with the coimmobilized column. Then a maximum of 71 g/L ethanol was produced with a productivity of 2.5 g/L h. The coimmobilized column alone gave a maximum ethanol concentration of 52 g/L with a productivity of 4.5 g/L h, whereas immobolized K. fragilis only produced 13 g/L ethanol with a productivity of 1.1 g/L h. It was not possible to obtain theoretical yields of ethanol from the highest substrate concentration.  相似文献   

6.
The thermotolerant yeast, Kluyveromyces marxianus IMB3, was grown in batch culture at 45°C on cellulose-containing media, supplemented with exogenous cellulase activity. At various stages during fermentation, both substrate and enzyme were added in batch mode and fermentation was continued for 220 h. Ethanol production increased to 20 g/l at 200 h, representing 45% of the maximum theoretical yield. In subsequent experiments, the organism was immobilized in calcium alginate beads and these were used in a similar, batch-fed system at 45°C. Again, fermentation was continued for 220 h and ethanol production increased to its maximum, of 28 g/l, within 100 h and this represented in excess of 60% of the maximum theoretical yield.  相似文献   

7.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

8.
A total of 65 yeast strains were screened for their ability to grow and ferment lactose in a standard DURHAM tube test at 30 °C. Based on the kinetic parameters for lactose and whey lactose fermentations in shake flask cultures, the strain Candida psedotropicalis 65 was chosen for further studies. Some of the cultural parameters affecting ethanolic fermentations on lactose were standardized. At an initial lactose concentration of 100–120 g/l in the medium containing concentrated whey or lactose, at 40 °C and within 48 h, the selected strain reached an ethanol concentration of 41–59 g/l, an ethanol productivity of 1.3–3.0 g/l/h, a lactose consumption of 99%, an ethanol yield 0.4–0.49 g/g and a biomass yield of 0.027 g/g.  相似文献   

9.
Batch and continuous fermentation studies were performed to optimize the production of ammonium lactate from whey to optimize the production of ammonium lactate from whey permeate. The product known as fermented ammoniated condensed whey permeate (FACWP) is a very promising animal feed. After an initial screening of four strains which produce predominantly L(+)- lactic acid, the desired isomer [D(-)-lactic acid is toxic], Streptococcus cremoris 2487 was chosen for further study. In batch mode, pH between 6.0 and 6.5 and 35 degrees C provided optimum incubation conditions. To stimulate a plug flow reactor, three CSTRs (continuous stirred tank reactors) were connected in tandem. For a 7.5-h retention time, 1.6-fold and 1.3-fold higher productivities were obtained for three-stage than for the single- and two-stage reactors, respectively. Various retentions times were examined (5, 7.5, and 10 h; 5g/L yeast extract). Although maximum lactate productivity occurred at a 5-h residence time (5.38 g/L H. 75% lactose utilization), lactose utilization was more complete at 7.5 h (4.38 g/L h productivity, 91% lactose utilization and a productivity, 91% lactose utilization). Retention time was increased to 15 h to obtain 95.9% lactose utilization and a productivity of 2.42g/L h for 2g/L yeast extract. Based on this lower yeast extract concentration, it was determined that ammonium lactate production and subsequent concentration by 11-fold would yield a product (FACWP) 17% more than soybean meal (crude protein contents are equivalent, 44%) at current market prices.  相似文献   

10.
Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature, pH, ethanol concentration), cell densities, and gel concentration. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentration were monitored at different feedstock flow rates.  相似文献   

11.
In order to produce sophorolipids from whey, thereby lowering the lactose content and biological oxygen demand, a two-step batch cultivation process was developed including medium sterilization by filtration. In the first step, whey was sterilized by a combination of crossflow and sterile filtration. Because the sophorolipid-producing yeast Candida bombicola ATCC 22214 was not able to use lactose as a carbon source directly, the oleaginous yeast Cryptococcus curvatus ATCC 20509 was grown on deproteinized whey concentrates (DWC). With 1: 1 diluted DWC-20, lactose was consumed as the carbon source and biomass (24 g/l dry weight content) as well as single-cell oil (SCO, 10 g/l) were produced. The cultivation broth was disrupted with a glass bead mill and it served as medium for growth (29 g cell dry mass/l) and sophorolipid production (12 g/l) of the yeast C. bombicola. Received: 29 July 1998 / Received revision: 5 October 1998 / Accepted: 11 October 1998  相似文献   

12.
Summary Living Lactobacillus delbrueckii cells were entrapped in calcium alginate gel beads and employed both in recycle batch and continuous column reactors to produce l-lactic acid from glucose. The substrate contained l% (w/v) yeast extract as nutrient and 4.8% (w/v) solid calcium carbonate as buffer. The maxiumum lactic acid yield obtained was 97%, of which more than 90% was l-lactic acid. The biocatalyst activity half-life in continuous operation was about 100 d, and only about 10% of the activity was lost during intermittent storage of the bioreactor at +7°C for about 5 months.  相似文献   

13.
Summary The -galactosidase from Streptococcus thermophilus formed transferase products (including up to six disaccharides and two trisaccharides) during the hydrolysis of lactose to glucose and galactose. The extent of transferase products formed was dependent on the initial lactose concentration, reaching up to 40% of the total carbohydrate at 70% w/v lactose. At high lactose concentrations (40% w/v) trisaccharide transferase products were formed initially, followed by the appearance of disaccharide transferase products. In contrast, at low lactose concentrations (7.5 w/v), only traces of the trisaccharides were detected with disaccharides being the predominant transferase products. The disaccharide products accumulated to relatively high concentrations late in the overall hydrolysis of lactose, at both high and low initial lactose concentrations, while the trisaccharides peaked much earlier and were themselves subsequently hydrolysed prior to the complete disappearance of lactose. It was possible to study the hydrolysis of galactosyl lactose by the S. thermophilus -galactosidase using a semi-pure galactosyl lactose preparation containing 5% lactose. The hydrolysis of this trisaccharide occurred via at least four disaccharide intermidiates, which appeared chromatographically identical to the disaccharide transferase products formed during lactose hydrolysis. This suggests that the enzymic formation and subsequent hydrolysis of galactosyl lactose occurs via coincident reaction pathways. The initial rate of galactose over glucose formation during galactosyl lactose hydrolysis changed from a ratio of 3:1 at low (2–3% w/v) substrate concentrations to 1.5:1 at high (>20% w/v) concentrations. This indicates a shift in the preferred initial cleavage site from the galactose-galactose bond to the galactose-glucose bond.  相似文献   

14.
Due to its high content of lactose and abundant availability, cheese whey powder (CWP) has received much attention for ethanol production in fermentation processes. However, lactose‐fermenting yeast strains including Kluyveromyces marxianus can only produce alcohol at a relatively low level, while the most commonly used distiller yeast strain Saccharomyces cerevisiae cannot ferment lactose since it lacks both β‐galactosidase and the lactose permease system. To combine the unique aspects of these two yeast strains, hybrids of K. marxianus TY‐22 and S. cerevisiae AY‐5 were constructed by protoplast fusion. The fusants were screened and characterized by DNA content, β‐galactosidase activity, ethanol tolerance, and ethanol productivity. Among the genetically stable fusants, the DNA content of strain R‐1 was 6.94%, close to the sum of the DNA contents of TY‐22 (3.99%) and AY‐5 (3.51%). The results obtained by random‐amplified polymorphic DNA analysis suggested that R‐1 was a fusant between AY‐5 and TY‐22. During the fermentation process with CWP, the hybrid strain R‐1 produced 3.8% v/v ethanol in 72 h, while the parental strain TY‐22 only produced 3.1% v/v ethanol in 84 h under the same conditions.  相似文献   

15.
A new low-cost β-galactosidase (lactase) preparation for whey permeate saccharification was developed and characterized. A biocatalyst with a lactase activity of 10 U/mg, a low transgalactosylase activity and a protein content of 0.22 mg protein/mg was obtained from a fermenter culture of the fungus Penicillium notatum. Factors influencing the enzymatic hydrolysis of lactose, such as reaction time, pH, temperature and enzyme and substrate concentration were standardized to maximize sugar yield from whey permeate. Thus, a 98.1% conversion of 5% lactose in whey permeate to sweet (glucose-galactose) syrup was reached in 48 h using 650 β-galactosidase units/g hydrolyzed substrate. After the immobilization of the acid β-galactosidase from Penicillium notatum on silanized porous glass modified by glutaraldehyde binding, more than 90% of the activity was retained. The marked shifts in the pH value (from 4.0 to 5.0) and optimum temperatures (from 50°C to 60°C) of the solid-phase enzyme were observed and discussed. The immobilized preparation showed high catalytic activity and stability at wider pH and temperature ranges than those of the free enzyme, and under the best operating conditions (lactose, 5%; β-galactosidase, 610–650 U/g lactose; pH 5.0; temperature 55°C), a high efficiency of lactose saccharification (84–88%) in whey permeate was achieved when lactolysis was performed both in a batch process and in a recycling packed-bed bioreactor. It seems that the promising results obtained during the assays performed on a laboratory scale make this immobilizate a new and very viable preparation of β-galactosidase for application in the processing of whey and whey permeates.  相似文献   

16.
Summary The thermotolerant yeast strain,Kluyveromyces marxianus IMB3 was shown to be capable of growth and ethanol production on lactose containing media at 45°C. On media containing 4% (w/v) lactose, ethanol production increased to 6.0g/l within 50h and this represented 29% of theoretical yield. During growth on lactose containing media the organism was shown to produce a cell-associated β-galactosidase and no significant enzyme could be detected in the extracellular culture filtrate. Addition of β-galactosidase, released fromKluyveromyces marxianus IMB3 cells, to active fermentations, resulted in increasing ethanol production to 53% of theoretical yield at 45°C.  相似文献   

17.
Thermostable β‐galactosidase from Bacillus coagulans RCS3 was purified by successive column chromatography using DEAE‐cellulose and Sephadex G‐50. Immobilization of the purified enzyme was studied with DEAE‐cellulose and calcium alginate. The efficiency of β‐galactosidase retention was 87 % with DEAE‐cellulose (17 mg protein/mL of matrix) and 80 % with calcium alginate (2.2 mg protein/g bead). Comparative studies of immobilization displayed a shift in the optimum temperature from 65 °C to 70 °C provoked by DEAE‐cellulose, although no effect was observed with calcium alginate. The heat inactivation curve revealed an improvement in the stability (t1/2 of 14.5 h for the immobilized enzyme as compared to 2 h for the free enzyme at 65 °C) in a calcium alginate system. This immobilized enzyme has a wide pH stability range (6.5–11). β‐Galactosidase immobilized by DEAE‐cellulose and calcium alginate allowed a 57 and 70 % lactose hydrolysis, respectively, to be achieved within 48 h after repeated use for twenty times.  相似文献   

18.
Intrinsic growth and substrate uptake parameters were obtained for Peptostreptococcus productus, strain U-1, using carbon monoxide as the limiting substrate. A modified Monod model with substrate inhibition was used for modeling. In addition, a product yield of 0.25 mol acetate/mol CO and a cell yield of 0.034 g cells/g CO were obtained. While CO was found to be the primary substrate, P. productus is able to produce acetate from CO2 and H2, although this substrate could not sustain growth. Yeast extract was found to also be a growth substrate. A yield of 0.017 g cell/g yeast extract and a product yield of 0.14 g acetate/g yeast extract were obtained. In the presence of acetate, the maximum specific CO uptake rate was increased by 40% compared to the maximum without acetate present. Cell replication was inhibited at acetate concentrations of 30 g/l. Methionine was found to be an essential nutrient for growth and CO uptake by P. productus. A minimum amount of a complex medium such as yeast extract (0.01%) is, however, required.  相似文献   

19.
A co-culture platform for bioethanol production from brown macroalgae was developed, consisting of two types of engineered Saccharomyces cerevisiae strains; alginate- and mannitol-assimilating yeast (AM1), and cellulase-displaying yeast (CDY). When the 5% (w/v) brown macroalgae Ecklonia kurome was used as the sole carbon source for this system, 2.1 g/L of ethanol was produced, along with simultaneous consumption of alginate, mannitol, and glucans.  相似文献   

20.
The lactose in cheese whey is an interesting substrate for the production of bulk commodities such as bio-ethanol, due to the large amounts of whey surplus generated globally. In this work, we studied the performance of a recombinant Saccharomyces cerevisiae strain expressing the lactose permease and intracellular ß-galactosidase from Kluyveromyces lactis in fermentations of deproteinized concentrated cheese whey powder solutions. Supplementation with 10 g/l of corn steep liquor significantly enhanced whey fermentation, resulting in the production of 7.4% (v/v) ethanol from 150 g/l initial lactose in shake-flask fermentations, with a corresponding productivity of 1.2 g/l/h. The flocculation capacity of the yeast strain enabled stable operation of a repeated-batch process in a 5.5-l air-lift bioreactor, with simple biomass recycling by sedimentation of the yeast flocs. During five consecutive batches, the average ethanol productivity was 0.65 g/l/h and ethanol accumulated up to 8% (v/v) with lactose-to-ethanol conversion yields over 80% of theoretical. Yeast viability (>97%) and plasmid retention (>84%) remained high throughout the operation, demonstrating the stability and robustness of the strain. In addition, the easy and inexpensive recycle of the yeast biomass for repeated utilization makes this process economically attractive for industrial implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号