首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In order to study the feasibility of Cucumber mosaic virus (CMV) as an expression vector, the full-length cDNA of RNA 3 from strain SD was cloned and the sequence around the start codon of the coat protein (CP) gene was modified to create an Nsi I site for insertion of foreign genes. The CP gene was replaced by the green fluorescent protein (GFP) gene. The cDNAs of Fny RNAs 1 and 2 and the chimeric SD RNA 3 were cloned between the modified 35S promoter and terminator. Tobacco protoplasts were transfected with a mixture of the viral cDNAs containing 35S promoter and terminator as a replacement vector and expressed GFP. A complementation system was established when the replacement vector was inoculated onto the transgenic tobacco plants expressing SD-CMV CP. GFP was detected in the inoculated leaves in 5 of 18 tested plants and in the first upper systemic leaf of one of the 5 plants ten days after inoculation. However, no GFP could be detected in all the plants one month after inoculation. Recombination be  相似文献   

3.
4.
Tobacco mosaic virus (TMV) derivatives that encode movement protein (MP) as a fusion to the green fluorescent protein (MP:GFP) were used in combination with antibody staining to identify host cell components to which MP and replicase accumulate in cells of infected Nicotiana benthamiana leaves and in infected BY-2 protoplasts. MP:GFP and replicase colocalized to the endoplasmic reticulum (ER; especially the cortical ER) and were present in large, irregularly shaped, ER-derived structures that may represent "viral factories." The ER-derived structures required an intact cytoskeleton, and microtubules appeared to redistribute MP:GFP from these sites during late stages of infection. In leaves, MP:GFP accumulated in plasmodesmata, whereas in protoplasts, the MP:GFP was targeted to distinct, punctate sites near the plasma membrane. Treating protoplasts with cytochalasin D and brefeldin A at the time of inoculation prevented the accumulation of MP:GFP at these sites. It is proposed that the punctate sites anchor the cortical ER to plasma membrane and are related to sites at which plasmodesmata form in walled cells. Hairlike structures containing MP:GFP appeared on the surface of some of the infected protoplasts and are reminiscent of similar structures induced by other plant viruses. We present a model that postulates the role of the ER and cytoskeleton in targeting the MP and viral ribonucleoprotein from sites of virus synthesis to the plasmodesmata through which infection is spread.  相似文献   

5.
6.
Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine‐scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement‐defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild‐type MP (GFP:MPwt) mainly co‐localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement‐defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily.  相似文献   

7.
Systemic symptoms induced on Nicotiana tabacum cv. Xanthi by Tobacco mosaic virus (TMV) are modulated by one or both amino-coterminal viral 126- and 183-kDa proteins: proteins involved in virus replication and cell-to-cell movement. Here we compare the systemic accumulation and gene silencing characteristics of TMV strains and mutants that express altered 126- and 183-kDa proteins and induce varying intensities of systemic symptoms on N. tabacum. Through grafting experiments, it was determined that M(IC)1,3, a mutant of the masked strain of TMV that accumulated locally and induced no systemic symptoms, moved through vascular tissue but failed to accumulate to high levels in systemic leaves. The lack of M(IC)1,3 accumulation in systemic leaves was correlated with RNA silencing activity in this tissue through the appearance of virus-specific, approximately 25-nucleotide RNAs and the loss of fluorescence from leaves of transgenic plants expressing the 126-kDa protein fused with green fluorescent protein (GFP). The ability of TMV strains and mutants altered in the 126-kDa protein open reading frame to cause systemic symptoms was positively correlated with their ability to transiently extend expression of the 126-kDa protein:GFP fusion and transiently suppress the silencing of free GFP in transgenic N. tabacum and transgenic N. benthamiana, respectively. Suppression of GFP silencing in N. benthamiana occurred only where virus accumulated to high levels. Using agroinfiltration assays, it was determined that the 126-kDa protein alone could delay GFP silencing. Based on these results and the known synergies between TMV and other viruses, the mechanism of suppression by the 126-kDa protein is compared with those utilized by other originally characterized suppressors of RNA silencing.  相似文献   

8.
Initiation and maintenance of virus-induced gene silencing   总被引:29,自引:0,他引:29       下载免费PDF全文
MT Ruiz  O Voinnet    DC Baulcombe 《The Plant cell》1998,10(6):937-946
  相似文献   

9.
植物抗病毒分子机制   总被引:1,自引:0,他引:1  
在与植物病毒的长期斗争中,植物进化出多种抗病毒机制,其中RNA沉默和R基因介导的病毒抗性是最受人们关注的两种机制.一方面,RNA沉默是植物抵抗病毒侵染的重要手段.植物在病毒侵染过程中可形成病毒来源的双链RNA,经过DCL蛋白的切割、加工形成sRNA,与AGO蛋白结合形成RISC指导病毒RNA的沉默,用于清除病毒.相应地,病毒在与植物的竞争中进化出RNA沉默抑制子,抑制宿主RNA沉默系统以逃避宿主RNA沉默抗病毒反应,增强致病能力.另一方面,植物也进化出R基因介导植物对包括病毒在内的多类病原的抗性.R蛋白直接或间接识别病毒因子,通过一系列的信号转导途径激活植物防御反应,限制病毒的进一步侵染.对植物抗病毒的研究有助于人们对植物抗病分子基础的理解,有重要的科学意义和潜在应用价值.本文综述了植物抗病毒分子机制的重要进展.  相似文献   

10.
Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme‐linked immunosorbent assay (ELISA). Thus, this species looks like a non‐host for JPN 1, an apparent situation of non‐host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C‐terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N‐PIPO and P3N‐ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)‐tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus‐induced fluorescence could be found in discrete areas of both inoculated and non‐inoculated leaves. In comparison with other plant–virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.  相似文献   

11.
Gao Q  Brydon EW  Palese P 《Journal of virology》2008,82(13):6419-6426
Influenza viruses are classified into three types: A, B, and C. The genomes of A- and B-type influenza viruses consist of eight RNA segments, whereas influenza C viruses only have seven RNAs. Both A and B influenza viruses contain two major surface glycoproteins: the hemagglutinin (HA) and the neuraminidase (NA). Influenza C viruses have only one major surface glycoprotein, HEF (hemagglutinin-esterase fusion). By using reverse genetics, we generated two seven-segmented chimeric influenza viruses. Each possesses six RNA segments from influenza virus A/Puerto Rico/8/34 (PB2, PB1, PA, NP, M, and NS); the seventh RNA segment encodes either the influenza virus C/Johannesburg/1/66 HEF full-length protein or a chimeric protein HEF-Ecto, which consists of the HEF ectodomain and the HA transmembrane and cytoplasmic regions. To facilitate packaging of the heterologous segment, both the HEF and HEF-Ecto coding regions are flanked by HA packaging sequences. When introduced as an eighth segment with the NA packaging sequences, both viruses are able to stably express a green fluorescent protein (GFP) gene, indicating a potential use for these viruses as vaccine vectors to carry foreign antigens. Finally, we show that incorporation of a GFP RNA segment enhances the growth of seven-segmented viruses, indicating that efficient influenza A viral RNA packaging requires the presence of eight RNA segments. These results support a selective mechanism of viral RNA recruitment to the budding site.  相似文献   

12.
Cell-penetrating peptides (CPP) can translocate across the cell membrane and have been extensively studied for the delivery of proteins, nucleic acids, and therapeutics in mammalian cells. However, characterizations of CPP in plants have only recently been initiated. We showed that the intact virion and a recombinant capsid protein (CaP) from a plant-infecting nonenveloped icosahedral RNA virus, Brome mosaic virus (BMV), can penetrate the membranes of plant protoplasts but are trapped by the extracellular matrix. Furthermore, a 22-residue peptide derived from the N-terminal region of the CaP (CPNT) can enter barley protoplasts and cells of intact barley and Arabidopsis roots. An inhibitor of the macropinocytosis reduced CPNT entry, while treatment with NiCl(2) changed the cellular localization of CPNT. CPNT increased uptake of the green flourescent protein (GFP) into the cell when covalently fused to GFP or when present in trans of GFP. The BMV CPNT overlaps with the sequence known to bind BMV RNA, and it can deliver BMV RNAs into cells, resulting in viral replication, as well as deliver double-stranded RNAs that can induce gene silencing.  相似文献   

13.
Strong RNA silencing was induced in plants transformed with an amplicon consisting of full-length cDNA of potato leafroll virus (PLRV) expressing green fluorescent protein (GFP), as shown by low levels of PLRV-GFP accumulation, lack of symptoms and accumulation of amplicon-specific short interfering RNAs (siRNAs). Inoculation of these plants with various viruses known to encode silencing suppressor proteins induced a striking synergistic effect leading to the enhanced accumulation of PLRV-GFP, suggesting that it had escaped from silencing. However, PLRV-GFP escape also occurred following inoculation with viruses that do not encode known silencing suppressors and treatment of silenced plants with biotic or abiotic stress agents. We propose that viruses can evade host RNA-silencing defences by a previously unrecognized mechanism that may be associated with a host response to some types of abiotic stress such as heat shock.  相似文献   

14.
15.
16.
It is generally accepted that viral systemic infection follows the source-to-sink symplastic pathway of sugar translocation. In plants that are classified as apoplastic loaders, the boundary between the companion cell-sieve element (CC-SE) complex and neighboring cells is symplastically restricted, and the potential passage of macromolecules between the two domains has yet to be explored. Transgenic tobacco plants expressing green fluorescence protein (GFP) and cucumber mosaic virus (CMV)-encoded proteins fused to GFP under the control of the fructose-1,6-bisphosphatase (FBPase) promoter were produced in order to localize the encoded proteins in mesophyll and bundle sheath cells and to explore the influence of viral infection on the functioning of plasmodesmata interconnecting the two domains. GFP produced outside the vascular tissue could overcome the symplastic barrier between the CC-SE complex and the surrounding cells to enter the vasculature in CMV-infected plants. Grafting of control (non-transgenic) tobacco scions to CMV-infected FBPase-GFP-expressing root stocks confirmed that GFP could move long distances in the phloem. No movement of the gfp mRNA was noticeable in this set of experiments. The ability of GFP to enter the vasculature and move long distances was also evident upon infection of the grafting plants with other viruses. These results provide experimental evidence for alteration of the functioning of plasmodesmata interconnecting the CC-SE complex and neighboring cells by viral infection to enable non-selective trafficking of macromolecules from the mesophyll into the sieve tube.  相似文献   

17.
Recently, reverse genetics systems of plant negative‐stranded RNA (NSR) viruses have been developed to study virus–host interactions. Nonetheless, genetic rescue of plant NSR viruses in both insect vectors and monocot plants is very limited. Northern cereal mosaic virus (NCMV), a plant cytorhabdovirus, causes severe diseases in cereal plants through transmission by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. In this study, we first developed a minireplicon system of NCMV in Nicotiana benthamiana plants, and then recovered a recombinant NCMV virus (rNCMV‐RFP), with a red fluorescent protein (RFP) insertion, in SBPHs and barley plants. We further used rNCMV‐RFP and green fluorescent protein (GFP)‐tagged barley yellow striate mosaic virus (rBYSMV‐GFP), a closely related cytorhabdovirus, to study superinfection exclusion, a widely observed phenomenon in dicot plants rarely studied in monocot plants. Interestingly, cellular superinfection exclusion of rBYSMV‐GFP and rNCMV‐RFP was observed in barley leaves. Our results demonstrate that two insect‐transmitted cytorhabdoviruses are enemies rather than friends at the cellular level during coinfections in plants.  相似文献   

18.
Expression of double-stranded RNA (dsRNA) homologous to virus sequences can effectively interfere with RNA virus infection in plant cells by triggering RNA silencing. Here we applied this approach against a DNA virus, African cassava mosaic virus (ACMV), in its natural host cassava. Transgenic cassava plants were developed to express small interfering RNAs (siRNA) from a CaMV 35S promoter-controlled, intron-containing dsRNA cognate to the common region-containing bidirectional promoter of ACMV DNA-A. In two of three independent transgenic lines, accelerated plant recovery from ACMV-NOg infection was observed, which correlates with the presence of transgene-derived siRNAs 21–24 nt in length. Overall, cassava mosaic disease symptoms were dramatically attenuated in these two lines and less viral DNA accumulation was detected in their leaves than in those of wild-type plants. In a transient replication assay using leaf disks from the two transgenic lines, strongly reduced accumulation of viral single-stranded DNA was observed. Our study suggests that a natural RNA silencing mechanism targeting DNA viruses through production of virus-derived siRNAs is turned on earlier and more efficiently in transgenic plants expressing dsRNA cognate to the viral promoter and common region.  相似文献   

19.
Studies have indicated that cauliflower mosaic virus (CaMV) gene expression is mediated by the translation of polycistronic 35S pregenomic RNA, but the involvement of some minor subgenomic RNA species is also suspected. We examined the involvement of the 35S promoter in the expression of CaMV open reading frames (ORFs) I and IV using both 35S RNA-driven and promoter-less ORF I- and ORF IV-β-glucuronidase (GUS) fusion constructs. In addition to the 35S promoter-dependent expression of both ORF I- and IV-GUS fusions, we detected the 35S promoter-independent expression of both fusion genes via subgenomic mRNAs, which were detected by Northern blotting in the protoplasts transfected with the 35S promoter-driven constructs as well as in those transfected with the promoter-less constructs. These results suggest the involvement of subgenomic RNAs in the expression of CaMV ORFs I and IV, and the operation of a dual strategy in the expression of two viral genes.  相似文献   

20.
Turnip yellow mosaic virus (TYMV) is a spherical plant virus that has a single 6.3 kb positive strand RNA as a genome. In this study, RNA1 sequence of Flock house virus (FHV) was inserted into the TYMV genome to test whether TYMV can accommodate and express another viral entity. In the resulting construct, designated TY-FHV, the FHV RNA1 sequence was expressed as a TYMV subgenomic RNA. Northern analysis of the Nicotiana benthamiana leaves agroinfiltrated with the TY-FHV showed that both genomic and subgenomic FHV RNAs were abundantly produced. This indicates that the FHV RNA1 sequence was correctly expressed and translated to produce a functional FHV replicase. Although these FHV RNAs were not encapsidated, the FHV RNA having a TYMV CP sequence at the 3’-end was efficiently encapsidated. When an eGFP gene was inserted into the B2 ORF of the FHV sequence, a fusion protein of B2-eGFP was produced as expected. [BMB Reports 2014; 47(6): 330-335]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号