首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes serious diarrhea and hemolytic uremic syndrome in humans. The expressions of EspD and intimin by O157:H7 have now been shown to be down-regulated by medium conditioned by O157:H7 grown at stationary phase. Preparation of conditioned medium showing the effect on the amount of EspD was not dependent on temperature or growth medium, but was dependent on growth phase. Inhibition of EspD and intimin expression was also induced by medium conditioned by E. coli K-12 strains and homoserine lactone, a signal molecule of the quorum-sensing system in gram-negative bacteria. These results suggest the possibility that the quorum-sensing system mediated by self-produced extracellular factors plays an important role in control of colonization of EHEC O157:H7.  相似文献   

2.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes serious diarrhea and hemolytic uremic syndrome in humans. The expressions of EspD and intimin by O157:H7 have now been shown to be down-regulated by medium conditioned by O157:H7 grown at stationary phase. Preparation of conditioned medium showing the effect on the amount of EspD was not dependent on temperature or growth medium, but was dependent on growth phase. Inhibition of EspD and intimin expression was also induced by medium conditioned by E. coli K-12 strains and homoserine lactone, a signal molecule of the quorum-sensing system in Gram-negative bacteria. These results suggest the possibility that the quorum-sensing system mediated by self-produced extracellular factors plays an important role in control of colonization of EHEC O157:H7.  相似文献   

3.
Escherichia coli O157:H7 is a zoonotic pathogen that can express a type III secretion system (TTSS) considered important for colonization and persistence in ruminants. E. coli O157:H7 strains have been shown to vary markedly in levels of protein secreted using the TTSS and this study has confirmed that a high secretion phenotype is more prevalent among isolates associated with human disease than isolates shed by healthy cattle. The variation in secretion levels is a consequence of heterogeneous expression, being dependent on the proportion of bacteria in a population that are actively engaged in protein secretion. This was demonstrated by indirect immunofluorescence and eGFP fusions that examined the expression of locus of enterocyte effacement (LEE)-encoded factors in individual bacteria. In liquid media, the expression of EspA, tir::egfp, intimin, but not map::egfp were co-ordinated in a subpopulation of bacteria. In contrast to E. coli O157:H7, expression of tir::egfp in EPEC E2348/69 was equivalent in all bacteria although the same fusion exhibited variable expression when transformed into an E. coli O157:H7 background. An E. coli O157:H7 strain deleted for the LEE demonstrated weak but variable expression of tir::egfp indicating that the elements controlling the heterogeneous expression lie outside the LEE. The research also demonstrated the rapid induction of tir::egfp and map::egfp on contact with bovine epithelial cells. This control in E. coli O157:H7 may be required to limit exposure of key surface antigens, EspA, Tir and intimin during colonization of cattle but allow their rapid production on contact with bovine gastrointestinal epithelium at the terminal rectum.  相似文献   

4.
Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium. This process is mediated by intimin, an outer membrane protein that is homologous to the invasins of pathogenic Yersinia. The intimin (eae) gene is part of a pathogenicity island, a 35-kb segment of DNA that has been acquired independently in different groups of pathogens. Nucleotide sequences of eae of three EPEC and four EHEC strains representing distinct clonal lineages revealed an exceptionally high level of divergence (15%) in the amino acid sequences of alpha, beta, and gamma intimin molecules, most of which is concentrated in the C-terminal region. The gamma intimin sequences from E. coli strains with serotypes O157:H7, O55:H7, and O157:H- are virtually identical, supporting the hypothesis that these bacteria belong to a single clonal lineage. Sequences of beta intimin of EPEC strains of serotypes O111:H2 and O128:H2 show substantial differences from alpha and gamma intimins, indicating that these strains have evolved independently. Strong nonrandom clustering of polymorphic sites indicates that the intimin genes are mosaics, suggesting that protein divergence has been accelerated by recombination and diversifying selection.  相似文献   

5.
Intimin and EspA proteins are virulence factors expressed by attaching and effacing Escherichia coli (AEEC) such as enteropathogenic and enterohaemorrhagic E. coli. The EspA protein makes up a filament structure forming part of the type III secretion system (TTSS) that delivers effector proteins to the host epithelial cell. Bacterial surface displayed intimin interacts with translocated intimin receptor in the host cell membrane leading to intimate attachment of the bacterium and subsequent attaching and effacing lesions. Here, we have assessed the use of recombinant monoclonal antibodies against E. coli O157:H7 EspA and intimin for the disruption of AEEC interaction with the host cell. Anti-gamma intimin antibodies did not reduce either adhesion of E. coli O157:H7 to host cell mono-layers or subsequent host cell actin rearrangement. Anti-EspA antibodies similarly had no effect on bacterial adhesion however they had a marked effect upon E. coli O157:H7-induced host cell actin rearrangement, where both monoclonal and polyclonal antibodies completely blocked cytoskeletal changes within the host cell. Furthermore, these anti-EspA antibodies were shown to reduce actin rearrangement induced by some but not all other AEEC serotypes tested. Both polyclonal and monoclonal antibodies could be used to label E. coli O157 EspA filaments and these immunoreagents did not inhibit the formation of such filaments. This is the first report of monoclonal antibodies to EspA capable of disrupting the TTSS function of E. coli O157:H7.  相似文献   

6.
The three-dimensional structure of a complex between the N-terminal domain of the quorum sensing protein SdiA of Escherichia coli and a candidate autoinducer N-octanoyl-L-homoserine lactone (C8-HSL) has been calculated in solution from NMR data. The SdiA-HSL system shows the "folding switch" behavior that has been seen for quorum-sensing factors produced by other bacterial species. In the presence of C8-HSL, a significant proportion of the SdiA protein is produced in a folded, soluble form in an E.coli expression system, whereas in the absence of acyl homoserine lactones, the protein is expressed into insoluble inclusion bodies. In the three-dimensional structure, the autoinducer molecule is sequestered in a deep pocket in the hydrophobic core, forming an integral part of the core packing of the folded SdiA. The NMR spectra of the complex show that the bound C8-HSL is conformationally heterogeneous, either due to motion within the pocket or to heterogeneity of the bound structure. The C8-HSL conformation is defined by NOEs to the protein only at the terminal methyl group of the octanoyl chain. Unlike other well-studied bacterial quorum sensing systems such as LuxR of Vibrio fischeri and TraR of Agrobacterium tumefaciens, there is no endogenous autoinducer for SdiA in E.coli: the E.coli genome does not contain a gene analogous to the LuxI and TraI autoinducer synthetases. We show that two other homoserine lactone derivatives are also capable of acting as a folding-switch autoinducers for SdiA. The observed structural heterogeneity of the bound C8-HSL in the complex, together with the variety of autoinducer-type molecules that can apparently act as folding switches in this system, are consistent with the postulated biological function of the SdiA protein as a detector of the presence of other species of bacteria.  相似文献   

7.
Cell-to-cell signalling in prokaryotes that leads to co-ordinated behaviour has been termed quorum sensing. This type of signalling can have profound impacts on microbial community structure and host-microbe interactions. The Gram-negative quorum-sensing systems were first discovered and extensively characterized in the marine Vibrios. Some components of the Vibrio systems are present in the classical genetic model organisms Escherichia coli and Salmonella enterica. Both organisms encode a signal receptor of the LuxR family, SdiA, but not a corresponding signal-generating enzyme. Instead, SdiA of Salmonella detects and responds to signals generated only by other microbial species. Conversely, E. coli and Salmonella encode the signal-generating component of a second system (a LuxS homologue that generates AI-2), but the sensory apparatus for AI-2 differs substantially from the Vibrio system. The only genes currently known to be regulated by AI-2 in Salmonella encode an active uptake and modification system for AI-2. Therefore, it is not yet clear whether Salmonella uses AI-2 as a signal molecule or whether AI-2 has some other function. In E. coli, the functions of both SdiA and AI-2 are unclear due to pleiotropy. Genetic strategies to identify novel signalling systems have been performed with E. coli and Providencia stuartii. Several putative signalling systems have been identified, one that uses indole as a signal and another that releases what appears to be a peptide. The latter system has homologues in E. coli and Salmonella, as well as other bacteria, plants and animals. In fact, the protease components from Providencia and Drosophila are functionally interchangeable.  相似文献   

8.
Using a porcine ileal in vitro organ culture model, we have demonstrated that egg yolk-derived antibodies specific for the attaching and effacing Escherichia coli (AEEC) virulence factors intimin and translocated intimin receptor (Tir), but not those specific for the AEEC-secreted proteins EspA, EspB and EspD, significantly reduced the bacterial adherence of the porcine enteropathogenic E. coli strain ECL1001, formerly 86-1390. Moreover, antibodies specific for intimin and Tir also significantly reduced bacterial adherence of heterologous AEEC strains, including human, bovine and canine enteropathogenic E. coli strains, as well as of O157:H7 Shiga toxin-producing E. coli strains in this model. In addition, we demonstrated that the oral administration of these anti-intimin antibodies significantly reduced the extent of attaching and effacing lesions found in the small intestine of weaned pigs challenged with the porcine enteropathogenic E. coli strain ECL1001. Overall, our results underline the potential use of specific egg yolk-derived antibodies as a novel approach for the prevention of AEEC infections.  相似文献   

9.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

10.
AIM: To evaluate the potential for polyclonal antibodies targeting enterohaemorrhagic Escherichia coli (EHEC) virulence determinants to prevent colonization of host cells by E. coli O157:H7. METHODS AND RESULTS: Rats and laying hens were immunized with recombinant proteins from E. coli O157:H7, EspA, C-terminal intimin or EscF. Rat antisera (IgG) or chicken egg powders (IgY) were assessed for their ability to inhibit growth and colonization-associated processes of E. coli O157:H7. Mammalian antisera with antibodies to intimin, EspA or EscF effectively reduced adherence of the pathogen to HeLa cells (P<0.05) and prevented type III secretion of Tir. Similarly, HeLa cells treated with chicken egg powder containing antibodies against intimin or EspA were protected from EHEC adherence (P<0.05). Neither egg nor rat antibody preparations had any antibacterial effect on the growth of EHEC (P>0.05). CONCLUSIONS: Antibody preparations targeting EHEC adherence-associated factors were effective at preventing adhesion and intimate colonization-associated events. SIGNIFICANCE AND IMPACT OF THE STUDY: This work indicates that immunotherapy with anti-adherence antibodies can reduce E. coli O157:H7 colonization of host cells. Passive immunization with specific antibodies may have the potential to reduce E. coli O157:H7 colonization in hosts such as cattle or humans.  相似文献   

11.
Human intestinal in vitro organ culture was used to assess the tissue tropism of human isolates of Escherichia coli O103:H2 and O103:H- that express intimin epsilon. Both strains showed tropism for follicle associated epithelium and limited adhesion to other regions of the small and large intestine. This is similar to the tissue tropism shown by intimin gamma enterohaemorrhagic (EHEC) O157:H7, but distinct from that of intimin alpha enteropathogenic (EPEC) O127:H6.  相似文献   

12.
A mass outbreak of Escherichia coli O157:H45 was first reported in Japan in 1998. This pathogen was classified as an enteropathogenic E. coli (EPEC) O157 because it was characterized by the Shiga toxin gene (stx)-negative and bundle-forming pilus (bfp) gene-positive genotypes. In this study, we investigated the type III secretion system in EPEC O157. Although no type III secreted proteins, Esps (E. colisecreted proteins), in EPEC O157:H45 were detectable in culture supernatant, secreted proteins were induced by the introduction of an EPEC plasmid-encoded regulator, per. In further contrast to EHEC O157:H7, EPEC O157:H45 triggered the accumulation of tyrosine phosphorylated proteins beneath the adherent bacteria. These results suggest that regulation of the type III secretion apparatus and host signal transduction events between E. coli O157:H45 and O157:H7 are completely different.  相似文献   

13.
Cattle are considered the major reservoir for Escherichia coli O157:H7, one of the newly emerged foodborne human pathogens of animal origin and a leading cause of haemorrhagic colitis in humans. A sensitive test that can accurately and rapidly detect the organism in the food animal production environment is critically needed to monitor the emergence, transmission, and colonization of this pathogen in the animal reservoir. In this study, a novel multiplex polymerase chain reaction (PCR) assay was developed by using 5 sets of primers that specifically amplify segments of the eaeA, slt-I, slt-II, fliC, rfbE genes, which allowed simultaneous identification of serotype O157:H7 and its virulence factors in a single reaction. Analysis of 82 E. coli strains (49 O157:H7 and 33 non-O157:H7) demonstrated that this PCR system successfully distinguished serotype O157:H7 from other serotypes of E. coli and provided accurate profiling of the shiga-like toxins and the intimin adhesin in individual strains. This multiplex PCR assay did not cross-react with the background bacterial flora in bovine faeces and could detect a single O157:H7 organism per gram of faeces when combined with an enrichment step. Together, these results indicate that the multiplex PCR assay can be used for specific identification and profiling of E. coli O157:H7 isolates, and may be applied to rapid and sensitive detection of E. coli O157:H7 in bovine faeces when combined with an enrichment step.  相似文献   

14.
15.
We have identified and characterized a protein of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7 that shares homology with antigen 43 and AIDA-I of E. coli. The gene encoding this protein consists of a 2850 bp open reading frame and was named cah for calcium binding antigen 43 homologue. The prototype EHEC strain EDL933 possesses identical duplicate copies of cah (cah1 and cah2), which showed 100% identity at the nucleotide level. We showed that E. coli K-12 containing the recombinant cah gene produced two proteins, an approximately 80 kDa outer membrane protein and a 43.0 kDa heat-extractable protein. The Cah protein contains a predicted 52-amino-acid extended signal sequence found in several autotransporter proteins, and N-terminal sequencing data indicated that the 43.0 kDa passenger protein was derived from cleavage of the signal sequence from alanine at position 53. Phenotypes such as autoaggregation and change in bacterial shape were observed when a recombinant plasmid containing the cah gene was introduced into a laboratory E. coli strain, and these phenotypes were eliminated upon mutation of the cah gene. The passenger domain contains six domains found in calcium-binding proteins, and the recombinant Cah passenger protein bound 45Ca2+. In E. coli O157:H7, Cah is a heat-extractable protein, the expression of which is induced in minimal essential media and under divalent ion-depleting conditions; it also participates in the formation of biofilms. Our results provide insight into the expression, secretion and preliminary features of the calcium-binding Cah autotransporter protein of EHEC O157:H7.  相似文献   

16.
A chromosomally lux-marked (Tn5 luxCDABE) strain of nontoxigenic Escherichia coli O157:H7 was constructed by transposon mutagenesis and shown to have retained the O157, H7, and intimin phenotypes. The survival characteristics of this strain in the experiments performed (soil at -5, -100, and -1,500 kPa matric potential and artificial groundwater) were indistinguishable from the wild-type strain. Evaluation of potential luminescence was found to be a rapid, cheap, and quantitative measure of viable E. coli O157:H7 Tn5 luxCDABE populations in environmental samples. In the survival studies, bioluminescence of the starved populations of E. coli O157:H7 Tn5 luxCDABE could be reactivated to the original levels of light emission, suggesting that these populations remain viable and potentially infective to humans. The attributes of the construct offer a cheap and low-risk substitute to the use of verocytotoxin-producing E. coli O157:H7 in long-term survival studies.  相似文献   

17.
18.
This study has identified horizontally acquired genomic regions of enterohaemorrhagic Escherichia coli O157:H7 that regulate expression of the type III secretion (T3S) system encoded by the locus of enterocyte effacement (LEE). Deletion of O-island 51, a 14.93 kb cryptic prophage (CP-933C), resulted in a reduction in LEE expression and T3S. The deletion also had a reduced capacity to attach to epithelial cells and significantly reduced E. coli O157 excretion levels from sheep. Further characterization of O-island 51 identified a novel positive regulator of the LEE, encoded by ecs1581 in the E. coli O157:H7 strain Sakai genome and present but not annotated in the E. coli strain EDL933 sequence. Functionally important residues of ECs1581 were identified based on phenotypic variants present in sequenced E. coli strains and the regulator was termed RgdR based on a motif demonstrated to be important for stimulation of gene expression. While RgdR activated expression from the LEE1 promoter in the presence or absence of the LEE-encoded regulator (Ler), RgdR stimulation of T3S required ler and Ler autoregulation. RgdR also controlled the expression of other phenotypes, including motility, indicating that this new family of regulators may have a more global role in E. coli gene expression.  相似文献   

19.
Two murine monoclonal antibodies (MAbs) (2B7 and 46E9-9) reactive with the H7 flagellar antigen of Escherichia coli were produced and characterized. A total of 217 E. coli strains (48 O157:H7, 4 O157:NM, 23 O157:non-H7, 22 H7:non-O157, and 120 non-O157:nonH7), 17 Salmonella serovars, and 29 other gram-negative bacteria were used to evaluate the reactivities of the two MAbs by indirect enzyme-linked immunosorbent assay (ELISA). Both MAbs reacted strongly with all E. coli strains possessing the H7 antigen and with H23- and H24-positive E. coli strains. Indirect ELISA MAb specificity was confirmed by inhibition ELISA and by Western blotting (immunoblotting), using partially purified flagellins from E. coli O157:H7 and other E. coli strains. On a Western blot, MAb 46E9-9 was more reactive against H7 flagellin of E. coli O157:H7 than against H7 flagellin of E. coli O1:K1:H7. Competition ELISA suggested that MAbs 2B7 and 46E9-9 reacted with closely related H7 epitopes. When the ELISA reactivities of the MAbs and two commercially available polyclonal anti-H7 antisera were compared, both polyclonal antisera and MAbs reacted strongly with E. coli H7 bacteria. However, the polyclonal antisera cross-reacted strongly both with non-H7 E. coli and with many non-E. coli bacteria. The polyclonal antisera also reacted strongly with H23 and H24 E. coli isolates. The data suggest the need to define serotype-specific epitopes among H7, H23, and H24 E. coli flagella. The anti-H7 MAbs described in this report have the potential to serve as high-quality diagnostic reagents, used either alone or in combination with O157-specific MAbs, to identify or detect E. coli O157:H7 in food products or in human and veterinary clinical specimens.  相似文献   

20.
Vacuum cooling is a common practice in the California leafy green industry. This study addressed the impact of vacuum cooling on the infiltration of Escherichia coli O157:H7 into lettuce as part of the risk assessment responding to the E. coli O157:H7 outbreaks associated with leafy green produce from California. Vacuum cooling significantly increased the infiltration of E. coli O157:H7 into the lettuce tissue (2.65E+06 CFU/g) compared to the nonvacuumed condition (1.98E+05 CFU/g). A stringent surface sterilization and quadruple washing could not eliminate the internalized bacteria from lettuce. It appeared that vacuuming forcibly changed the structure of lettuce tissue such as the stomata, suggesting a possible mechanism of E. coli O157:H7 internalization. Vacuuming also caused a lower reduction rate of E. coli O157:H7 in stored lettuce leaves than that for the nonvacuumed condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号