首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primary cultures of human hepatocytes and hepatoma cell line HepG2 are frequently used to evaluate the hepatic disposition of drugs and other xenobiotics. To check the variability of the expression of drug-metabolizing enzymes in these in vitro models, expression of genes coding for several cytochrome P450 isoforms and phase II enzymes was quantified during culture time by real-time RT-PCR. Gene expression was determined daily for primary hepatocytes maintained in a sandwich culture over 1 week and for HepG2, during the first 10 passages. In primary hepatocytes characteristic expression trends were observed which could be abstracted into three major classes of time curves. Genes of the first and the second class had an expression maximum around day 6 and day 4 in culture, respectively. The third class of genes had two expression peaks: at day 1 and 5 in culture. Surprisingly, also the cell line HepG2 showed significant expression changes during passages. For example, gene expression of cytochrome 1A1 varied 8-fold, that of cytochrome 2B6 30-fold, and that of NADP-quinone reductase 1 more than 200-fold within the first 10 passages. In conclusion, neither primary hepatocytes nor HepG2 cell line display a model for constant expression of drug-metabolizing enzymes.  相似文献   

2.
3.
In human beings, serum transferrin levels increase during iron deficiency and decrease with iron overload. Yet, whether or not iron levels actually affect the synthesis of transferrin in human liver cells is not known. In previous studies, iron was shown to suppress the expression of chimeric human transferrin genes in livers of transgenic mice. The goal of this study was to determine if iron suppresses intact endogenous human transferrin synthesis by testing the effects of changes in iron levels on synthesis of transferrin in a human hepatoma cell line HepG2. In HepG2 cells, normalized(35)S-metabolically labeled transferrin synthesis was consistently less following iron treatment with hemin or ferric citrate, than following treatment with an iron-chelator deferroxamine. Thus, this study provides new evidence that iron can regulate synthesis of intact endogenous human transferrin.  相似文献   

4.
5.
Spinal cerebellar ataxia type 12 (SCA12) has been attributed to the elevated expression of ppp2r2b. To better elucidate the pathomechanism of the neuronal disorder and to search for a pharmacological treatment, Drosophila models of SCA12 were generated by overexpression of a human ppp2r2b and its Drosophila homolog tws. Ectopic expression of ppp2r2b or tws caused various pathological features, including neurodegeneration, apoptosis, and shortened life span. More detailed analysis revealed that elevated ppp2r2b and tws induced fission of mitochondria accompanied by increases in cytosolic reactive oxygen species (ROS), cytochrome c, and caspase 3 activity. Transmission electron microscopy revealed that fragmented mitochondria with disrupted cristae were engulfed by autophagosomes in photoreceptor neurons of flies overexpressing tws. Additionally, transgenic flies were more susceptible to oxidative injury induced by paraquat. By contrast, ectopic Drosophila Sod2 expression and antioxidant treatment reduced ROS and caspase 3 activity and extended the life span of the SCA12 fly model. In summary, our study demonstrates that oxidative stress induced by mitochondrial dysfunction plays a causal role in SCA12, and reduction of ROS is a potential therapeutic intervention for this neuropathy.  相似文献   

6.
Overexpression of the mature form of hyaluronan-binding protein 1 (HABP1/gC1qR/p32), a ubiquitous multifunctional protein involved in cellular signaling, in normal murine fibroblast cells leads to enhanced generation of reactive oxygen species (ROS), mitochondrial dysfunction, and ultimately apoptosis with the release of cytochrome c. In the present study, human liver cancer cell line HepG2, having high intracellular antioxidant levels was chosen for stable overexpression of HABP1. The stable transformant of HepG2, overexpressing HABP1 does not lead to ROS generation, cellular stress, and apoptosis, rather it induced enhanced cell growth and proliferation over longer periods. Phenotypic changes in the stable transformant were associated with the increased "HA pool," formation of the "HA cable" structure, up-regulation of HA synthase-2, and CD44, a receptor for HA. Enhanced cell survival was further supported by activation of MAP kinase and AKT-mediated cell survival pathways, which leads to an increase in CYCLIN D1 promoter activity. Compared with its parent counterpart HepG2, the stable transformant showed enhanced tumorigenicity as evident by its sustained growth in low serum conditions, formation of the HA cable structure, increased anchorage-independent growth, and cell-cell adhesion. This study suggests that overexpression of HABP1 in HepG2 cells leads to enhanced cell survival and tumorigenicity by activating HA-mediated cell survival pathways.  相似文献   

7.
The use of a rapid and sensitive assay for N-acetylaspartate (NAA) in urine or eluates from dried urine on filter paper to make a chemical diagnosis of Canavan disease (CD) is described. It involves a simplified urease pretreatment for sample preparation and gas chromatography-mass spectrometry (EI, scanning mode) with or without stable isotope dilution. Significant improvements in the recovery of NAA and the GC-MS data-handling device made the assay without stable isotope dilution sensitive and quantitative enough to diagnose CD: Its coefficient of variation (CV) was below 12%. The CV obtained with stable isotope dilution was below 9%. One patient with CD had an abnormal NAA level that was more than 6 S.D. above the mean of the age-matched controls. This diagnostic procedure is accurate for screening and for the chemical diagnosis of CD, with a good cost:benefit ratio. The urinary NAA levels of the healthy controls decreased significantly with age. This change should be considered in making a chemical diagnosis of this disease.  相似文献   

8.
Aim and objectiveHippophae rhamnoides is an edible, nutrient rich plant found in the northern regions of India. It belongs to the family Elaeagnaceae and is well known for its traditional pharmacological activities. The present study was aimed to investigate the antioxidant and neuroprotective activities of H. rhamnoides.MethodologyThe hydroalcoholic extract of H. rhamnoides was evaluated for free radical scavenging activity using DPPH, hydroxyl radical scavenging and ferric thiocyanate assays. In vitro neuroprotective activity was assessed on human neuroblastoma cell line-IMR32 against hydrogen peroxide (H2O2) induced cytotoxicity. The neuroprotective effect was determined by measuring the cell viability through tetrazolium dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reducing assay and propidium iodide (PI) staining. Also the intracellular reactive oxygen species (ROS) activity was assessed using dichloro-dihydro-fluorescein diacetate (DCFDA) assay by flowcytometer.ResultsThe results of the study demonstrated that H. rhamnoides extract possesses potential free radical scavenging activity. The IC50 value for DPPH and OH radical scavenging assay was 70.92 μg/ml and 0.463 mg/ml, also the extract was also found to have considerable level of lipid peroxidation activity. The neuroprotective effect of H. rhamnoides was confirmed by its cell viability enhancing capacity against hydrogen peroxide induced cell cytotoxicity. The extract acted on IMR32 cells in a dose dependent manner as observed through PI and MTT assays. The percentage intracellular ROS activity was reduced by 60–70% in treated cells compared to H2O2 control.ConclusionThus the outcome of the study suggests that H. rhamnoides acts as a neuroprotectant against oxidative stress induced neurodegeneration.  相似文献   

9.
A fragment of the amyloid beta protein, βA(25-35), was investigated for its effect on production of reactive oxygen species (ROS) in human neutrophil granulocytes. The formation and identification of ROS were examined by using a 2',7'-dichlorofluorescin (DCF) fluorescence assay, a luminol chemiluminescence assay, electron paramagnetic resonance (EPR) spectroscopy with DEPMPO as a spin trap, and hydroxylation of 4-hydroxybenzoate (4-HBA). The DCF assay showed that βA(25-35) stimulated formation of ROS in a concentration and time dependent manner. The inverted peptide, βA(35-25), gave no response. Also, luminol-amplified chemiluminescence was stimulated by βA(25-35). Incubation with diethyldithiocarbamate (a superoxide dimustase inhibitor) and salicylhydroxamate (SHA; a myeloperoxidase inhibitor) reduced the chemiluminescence. This indicates that hypochlorous acid (HOCl) is formed after exposure to βA(25-35). The EPR spectra indicated a concentration dependent formation of superoxide ( O 2 • - ) - and hydroxyl ( •OH)- radicals. Hydroxylation of 4-HBA to 3,4,-dihydroxybenzoate confirmed production of •OH. This response was attenuated by SHA, indicating involvement of HOCl in formation of •OH. The DCF fluorescence was inhibited with U0126 (an extracellular signal regulated protein kinase (ERK) inhibitor). Further analysis with western blot confirmed phosphorylation of ERK1/2 after exposure to βA(25-35). The phospholipase A 2 (PLA 2 ) inhibitor 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid, and diphenyleneiodonium, which inhibits the NADPH oxidase, also led to a reduction of the DCF fluorescence. The present findings indicate that βA(25-35) stimulates the NADPH oxidase by activating the ERK pathway and PLA 2 . Production of O 2 • - can lead to HOCl and further formation of •OH, which both have a cytotoxic potential.  相似文献   

10.
Alpha-fetoprotein (AFP) is a tumor-associated embryonic molecule whose precise biological function remains unclear. A complete definition of the physiological activities of this oncofetal protein has been severely limited, until now, by the lack of a purification procedure appropriate to obtain pure AFP in appreciable amount. The present report describes a purification procedure extremely rapid and simple and takes advantage of the well-known fact that AFP contains copper. We have developed a single-step purification procedure by immobilized copper-chelate affinity chromatography using the culture medium from human hepatoblastoma cell line HepG2 grown in the absence of serum. This method yields AFP at high purity and high yield. Purified AFP amino acid sequence, molecular mass, carbohydrate structure, and copper content were found to be in line with previous studies. Moreover, we found that the purified AFP has superoxide dismutase activity with efficiency similar to that of the native Cu, Zn SODs at physiological pH. This result may provide further support to the idea that AFP is a bifunctional protein, acting in cellular defence against oxidative stress both as a copper buffer and as a superoxide radical scavenger.  相似文献   

11.
Lipid peroxidation of human heptoma cell line, HepG2, after incorporation of linoleic acid (LA), arachidonic acid (AA), and docosahexaenoic acid (DHA) was measured with a fluorescent probe and gas chromatography-mass spectrometry (GC-MS) analysis. The analysis with a fluorescent probe showed that incorporation of each polyunsaturated fatty acid (PUFA) enhanced the cellular lipid peroxidation level, but there was little difference in the effect of LA, AA, or DHA on the enhancement of cellular lipid peroxidation. The fluorescent analysis also showed that the addition of H(2)O(2) (0.5 mM) enhanced the cellular lipid peroxidation levels in LA and AA supplemented cells as compared with those without H(2)O(2). However, the enhancement of lipid peroxidation by H(2)O(2) was not observed in DHA-supplemented cells. The same result was obtained in the GC-MS analysis of total amounts of monohydroperoxides (MHP) formed in the cellular phospholipid oxidation. In this case, the main source for MHP was LA in LA-, AA-, and DHA-supplemented cells. A significant amount of AA-MHP and a small amount of DHA-MHP were observed in AA- and DHA-supplemented cells respectively. GC-MS analysis also indicated the specific positional distribution of DHA-MHP isomers. The isomers were formed only by hydrogen abstraction at the C-18 (16-MHP + 20-MHP; 46.5%), C-6 (4-MHP + 8-MHP; 38.5%), and C-12 (10-MHP + 14-MHP; 15.1%) positions, but not at the C-9 or C-15 positions.  相似文献   

12.
13.
为了提高体温,荒漠沙蜥喜好晒太阳的同时增加了紫外线对其皮肤的损伤。本实验研究了不同的紫外线强度(110、300、500、800mJ/cm2)对荒漠沙蜥皮肤形态、蜕皮、脂质过氧化和抗氧化酶的影响。结果显示:皮肤损伤和丙二醛含量的最高峰发生在暴露紫外线300、500、800mJ/cm2后的96、48、24h;SOD活性的最低峰发生在暴露紫外线110、300、500、800mJ/cm2后的24、48、12h;CAT活性在暴露紫外线后立即抑制,然后恢复提高。CAT活性的高低往往伴随皮肤的损伤程度和蜕皮的发生,这表明紫外线对皮肤的损伤与皮肤的脂质过氧化密切相关,CAT是一种主要的抗氧化酶。皮肤的角质层对保护皮肤免受紫外线的损伤也有重要作用。  相似文献   

14.
Dual oxidase 2 is a member of the NADPH oxidase (Nox) gene family that plays a critical role in the biosynthesis of thyroid hormone as well as in the inflammatory response of the upper airway mucosa and in wound healing, presumably through its ability to generate reactive oxygen species, including H2O2. The recently discovered overexpression of Duox2 in gastrointestinal malignancies, as well as our limited understanding of the regulation of Duox2 expression, led us to examine the effect of cytokines and growth factors on Duox2 in human tumor cells. We found that exposure of human pancreatic cancer cells to IFN-γ (but not other agents) produced a profound up-regulation of the expression of Duox2, and its cognate maturation factor DuoxA2, but not other members of the Nox family. Furthermore, increased Duox2/DuoxA2 expression was closely associated with a significant increase in the production of both intracellular reactive oxygen species and extracellular H2O2. Examination of IFN-γ-mediated signaling events demonstrated that in addition to the canonical Jak-Stat1 pathway, IFN-γ activated the p38-MAPK pathway in pancreatic cancer cells, and both played an important role in the induction of Duox2 by IFN-γ. Duox2 up-regulation following IFN-γ exposure is also directly associated with the binding of Stat1 to elements of the Duox2 promoter. Our findings suggest that the pro-inflammatory cytokine IFN-γ initiates a Duox2-mediated reactive oxygen cascade in human pancreatic cancer cells; reactive oxygen species production in this setting could contribute to the pathophysiologic characteristics of these tumors.  相似文献   

15.
Chattonella marina, a red tide or harmful algal bloom species, has caused mass fish kills and serious economic loss worldwide, and yet its toxic actions remain highly controversial. Previous studies have shown that this species is able to produce reactive oxygen species (ROS), and therefore postulated that ROS are the causative agents of fish kills. The present study investigates antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to C. marina, compared with responses exposed to equivalent and higher levels of ROS exposure. Even though C. marina can produce a high level of ROS, gills and erythrocytes of sea bream exposed to C. marina for 1 to 6 h showed neither significant induction of antioxidant enzymes nor lipid peroxidation. Antioxidant responses and oxidative damage did not occur as fish mortality began to occur, yet could be induced upon exposure to artificially supplied ROS levels an order of magnitude higher. The result of this study implies that ROS produced by C. marina is not the principal cause of fish kills.  相似文献   

16.
Zhang L  Xu L  Zeng Q  Zhang SH  Xie H  Liu AL  Lu WQ 《Mutation research》2012,741(1-2):89-94
Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs.  相似文献   

17.
A fragment of the amyloid beta protein, &#103 A(25-35), was investigated for its effect on production of reactive oxygen species (ROS) in human neutrophil granulocytes. The formation and identification of ROS were examined by using a 2',7'-dichlorofluorescin (DCF) fluorescence assay, a luminol chemiluminescence assay, electron paramagnetic resonance (EPR) spectroscopy with DEPMPO as a spin trap, and hydroxylation of 4-hydroxybenzoate (4-HBA). The DCF assay showed that &#103 A(25-35) stimulated formation of ROS in a concentration and time dependent manner. The inverted peptide, &#103 A(35-25), gave no response. Also, luminol-amplified chemiluminescence was stimulated by &#103 A(25-35). Incubation with diethyldithiocarbamate (a superoxide dimustase inhibitor) and salicylhydroxamate (SHA; a myeloperoxidase inhibitor) reduced the chemiluminescence. This indicates that hypochlorous acid (HOCl) is formed after exposure to &#103 A(25-35). The EPR spectra indicated a concentration dependent formation of superoxide ( O 2 &#148 &#109 ) - and hydroxyl ( &#148 OH)- radicals. Hydroxylation of 4-HBA to 3,4,-dihydroxybenzoate confirmed production of &#148 OH. This response was attenuated by SHA, indicating involvement of HOCl in formation of &#148 OH. The DCF fluorescence was inhibited with U0126 (an extracellular signal regulated protein kinase (ERK) inhibitor). Further analysis with western blot confirmed phosphorylation of ERK1/2 after exposure to &#103 A(25-35). The phospholipase A 2 (PLA 2 ) inhibitor 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid, and diphenyleneiodonium, which inhibits the NADPH oxidase, also led to a reduction of the DCF fluorescence. The present findings indicate that &#103 A(25-35) stimulates the NADPH oxidase by activating the ERK pathway and PLA 2 . Production of O 2 &#148 &#109 can lead to HOCl and further formation of &#148 OH, which both have a cytotoxic potential.  相似文献   

18.
The proteome of a proliferating human stem cell line was analyzed and then utilized to detect stem cell differentiation-associated changes in the protein profile. The analysis was conducted with a stable human fetal midbrain stem cell line (ReNcell VM) that displays the properties of a neural stem cell. Therefore, acquisition of proteomic data should be representative of cultured human neural stem cells (hNSCs) in general. Here we present a 2-DE protein-map of this cell line with annotations of 402 spots representing 318 unique proteins identified by MS. The subsequent proteome profiling of differentiating cells of this stem cell line at days 0, 4 and 7 of differentiation revealed changes in the expression of 49 identified spots that could be annotated to 45 distinct proteins. This differentiation-associated expression pattern was validated by Western blot analysis for transgelin-2, proliferating cell nuclear antigen, as well as peroxiredoxin 1 and 4. The group of regulated proteins also included NudC, ubiquilin-1, STRAP, stress-70 protein, creatine kinase B, glial fibrillary acidic protein and vimentin. Our results reflect the large rearrangement of the proteome during the differentiation process of the stem cells to terminally differentiated neurons and offer the possibility for further characterization of specific targets driving the stem cell differentiation.  相似文献   

19.
Acacia species are multipurpose trees, widely used in the traditional systems of medicine to treat various ailments. The major objective of the present study was to determine the gene expression of enzymatic antioxidants by acetone extract from the stem bark of three Acacia species (Acacia dealbata, Acacia ferruginea and Acacia leucophloea) in hydrogen peroxide (H2O2)-induced human hepatoma (HepG2) cells. The expression of antioxidant enzymes such as superoxide dismutase containing copper–zinc (CuZnSOD)/manganese (MnSOD), catalase (CAT) and glutathione peroxidase (GPx) in HepG2 cells was evaluated by real-time PCR. The results of antioxidant enzyme expression in real-time PCR study revealed that the H2O2 (200 μM) challenged HepG2 cells reduced the expression of enzymes such as SOD, GPx and CAT. However, the cells pre-treated with acetone extracts of all the three Acacia species significantly (P > 0.05) up-regulated the expression of antioxidant enzymes in a concentration dependent manner (25, 50 and 75 μg/mL). In conclusion, the findings of our study demonstrated that the acetone extract of Acacia species effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases.  相似文献   

20.
The role of the Pseudomonas aeruginosa OxyR-controlled antioxidants alkyl hydroperoxide reductase CF (AhpCF) and catalase B (KatB) was evaluated in biofilm vs. planktonic culture upon exposure to hydrogen peroxide. AhpCF was found to be critical for survival of biofilm bacteria while KatB was more important for survival of planktonic free-swimming organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号