首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The follicular dynamics of 112 mares treated with an equine pituitary extract were studied. Follicles >10 mm in diameter at day 15 post-ovulation appeared to represent the follicles which were induced with pituitary extract to grow and ovulate. This was shown by the greater number of >10 mm follicles in mares which subsequently had higher ovulation rates and by the subsequent decrease in number of small follicles (<20 mm) which corresponded with the increase in number of large follicles (>/=20 mm). The difference in diameter (mm) between the largest and second largest follicle on day 15 post-ovulation was greater (P<0.05) for extract-treated mares which subsequently had single ovulations than for extract-treated mares which subsequently had multiple ovulations (7.7 +/-1.5 vs 2.8 +/-0.6). The observed ratio of bilateral to unilateral multiple ovulations was not different (P>0.1) from the expected ratio which was calculated on the assumption that side of ovulation occurred independently (59:19 vs 62:16, observed vs expected).  相似文献   

2.
Embryo recovery per ovulation has been shown to be lower in superovulated mares than in untreated controls. The objectives of this study were to 1) determine whether follicles stimulated with superovulatory treatment ovulate or luteinize without ovulation, 2) determine fertilization rates of oocytes in oviducts of superovulated and control mares, and 3) evaluate viability of early stage embryos from superovulated and control mares when cultured in equine oviductal cell-conditioned medium. Cyclic mares were randomly assigned to 1 of 2 groups (n=14 per group) on the day of ovulation (Day 0): Group 1 received 40 mg of equine pituitary extract (EPE; i.m.) daily beginning on Day 5 after ovulation; mares assigned to Group 2 served as untreated controls. All mares were given 10 mg PGF(2alpha) on Day 5 and Day 6, and 3,300 IU of human chorionic gonadotropin (hCG) were administered intravenously once mares developed 2 follicles >/=35 mm in diameter (Group 1) or 1 follicle >/=35 mm in diameter (Group 2). Mares in estrus were inseminated daily with 1 x 10(9) progressively motile spermatozoa once a >/=35 mm follicle was obtained. Two days after the last ovulation the ovaries and oviducts were removed. Ovaries were examined for ovulatory tracts to confirm ovulation, while the oviducts were trimmed and flushed with Dulbeccos PBS + 10% FCS to recover fertilized oocytes. All fertilized oocytes (embryos) recovered were cultured in vitro for 5 d using TCM-199 conditioned with equine oviductal cells. Ninety-two percent of the CL's from EPE mares resulted from ovulations compared with 94% for mares in the control group (P>0.05). The percentages of ovulations resulting in embryos were 57.1 and 62.5% for EPE-treated and control mares, respectively (P>0.05). Eighty-eight (Group 1) and 91% (Group 2) of the freshly ovulated oocytes recovered were fertilized (P>0.05). After 5 d of culture, 46.4 and 40.0% of the embryos from EPE-treated and control mares developed to the morula or early blastocyst stage (P>0.05). In summary, the CL's formed in superovulated mares were from ovulations not luteinizations. Although embryo recovery was less than expected, fertilization rates and embryo development were similar (P>0.05) between superovulated and control mares.  相似文献   

3.
Cyclic Spanish Merino ewes were treated on Day 13 of the estrous cycle with 12 mg, i.m., FSH-P in saline (n = 9) or propylene glycol (n = 24), currently with 100 micrograms, i.m., Cloprostenol (Day 0). From Day-6 to Day 0, the ewes were observed daily by transrectal ultrasonography, after Day 0, ultrasonography was performed every 12 h for 72 h. Sizes and locations of > or = 2 mm follicles were recorded at each observation. The ovulation rate was determined by laparoscopy on Day 7 after estrus. The number of ovulations ranged from 0 to 6 in ewes treated with FSH-P in saline and from 0 to 16 in ewes receiving FSH-P in propylene glycol (P < 0.05). In the latter group, the response was bimodally distributed; about half of the females had 1 ovulation, whereas the remainder had > 4 with a mean of 7 ovulations. The ovulation rate was associated with 2 characteristics of the largest follicle present at treatment (Day 0). First, if the largest follicle on Day 0 had not changed in diameter from Day-1 to Day 0, then 7 of 9 ewes had > 3 ovulations; if the largest follicle had either increased or decreased, only 8 of 24 ewes had > 3 ovulations (P < 0.05). Second, there was a linear trend (P < 0.07) for ovulation rate to decrease as the persistence of the largest follicle at treatment increased; no ewe in which the largest follicle on Day 0 remained present for more than 36 h ovulated more than 6 follicles. As with the ovulation rate, the numbers of large follicles on Days 1.5, 2 and 2.5 varied with the interaction of change in diameter of the largest follicle on Day 0 from Day-1 to Day 0 and with vehicle. In summary, the superovulatory response was affected by the change in diameter from Day-1 to Day 0 of the largest follicle on Day 0 and the period required for that follicle to regress after treatment with FSH-P and cloprostenol.  相似文献   

4.
Embryo recovery from single ovulating mares is approximately 50 per cent per estrous cycle. Superovulation could be used to increase embryo recovery and provide extra embryos for embryo freezing. This review addresses some historical approaches to superovulation, as well as examines factors that affect the response of mares to equine FSH. eCG, GnRH and inhibin vaccines have been of limited success in stimulating multiple ovulation. Numerous studies have shown that injection of equine pituitary extract (EPE) will result in three to four ovulations per estrous cycle and two embryos. A purified, standardized EPE preparation (eFSH) also results in a similar response to EPE. Factors affecting the response to EPE and eFSH include day of initial treatment, size of largest follicle at initial treatment and frequency of injection. Embryos from single ovulating, untreated mares and eFSH-treated mares provide similar pregnancy rates upon nonsurgical transfer. Five to 7 days of eFSH treatment also has been shown to hasten the first ovulation of the breeding season. Potential problems after eFSH injections include anovulatory or luteinized follicles and overstimulation. Studies are needed to further evaluate the criteria for initiation of treatment and to determine how to increase ovulation rate without decreasing embryo recovery per ovulation.  相似文献   

5.
Relationships between double ovulations and plasma hormone concentrations were compared between 18 single ovulating and 6 double ovulating mares. The study began when the first follicle reached >or=30 mm, and ultrasound scanning and blood sampling were done every 12h to Day 3 (ovulation=Day 0). Data were analyzed for 2.5 d after the largest follicle was >or=30 mm and after Day -2.5 to encompass the mean 5-d interval between a >or=30 mm follicle and Day 0. During the 2.5 d after >or=30 mm, the increasing diameter of the largest follicle was less pronounced and plasma FSH concentrations were lower (approached significance) in the double ovulators than in the single ovulators. By Day -2.5, the largest follicle was smaller (P<0.01) and plasma FSH was lower (P<0.04) in the double ovulators. Plasma estradiol concentrations were higher (P<0.001) during the 2.5 d after >or=30 mm in the double ovulators and the correlation between estradiol and FSH was negative (r=-0.39, P<0.0001). In double ovulators, compared to single ovulators, the largest follicle was smaller, FSH was lower and estradiol was higher on most occasions between Days -2.5 and -0.5 (P<0.05), but plasma concentrations of LH and ir-inhibin were not significantly different. In conclusion, smaller preovulatory follicles in double ovulators were a response to lower FSH concentrations, due to higher estradiol concentrations from two preovulatory follicles; preovulatory differences in hormone concentrations between single and double ovulators were an effect rather than a cause of the double ovulations.  相似文献   

6.
Cyclic mares were assigned to 1 of 3 treatments (n=15 per group): Group 1 received equine pituitary extract (EPE; 25 mg, i.m.) on Day 5 after ovulation; Group 2 received EPE on Day 12 after ovulation; while Group 3 received 3.3 mg of GnRH analogue (buserelin implant) on the day of ovulation and 25 mg, i.m. EPE on Day 12. Mares in each group were given 10 mg PGF(2)alpha on the first and second day of EPE treatment. The EPE treatment was continued daily until the first spontaneous ovulation, at which time 3,300 IU of human chorionic gonadotropin (hCG) were given to induce further ovulations. Mares in estrus with a >/=35 mm follicle were inseminated every other day with pooled semen from 2 stallions. Embryo recovery was attempted 7 days after the last ovulation. Follicular changes and embryo recovery during 15 estrous cycles prior to treatment were used as control data. During treatment, the number of follicles >/=25 mm was higher (P<0.05) for Day 5 than for Day 12 or control mares, but the number for Day-5 mares was similar (P>0.05) to that of mares treated with buserelin implants (Group 3). Initiation of EPE treatment on Day 5 resulted in a greater (P<0.05) number of ovulation (2.9) than on Day 12 (1.1) or in the control mares (1.3) but not in the buserelin-treated mares (1.8). The number of embryos recovered from mares in the Day 5 (1.2), Day 12 (1.0), buserelin (0.9) and control (0.9) groups was similar (P>0.05). The conclusions were 1) EPE initiated in early diestrus increased follicular development and ovulation and 2) treatment with GnRH analogue marginally improved response to EPE treatment.  相似文献   

7.
The efficiency of superovulating mares with an enriched fraction of equine follicle-stimulating hormone (feFSH) and an equine pituitary extract (EPE) with similar FSH content but differing in the LH amount was compared. Mares were randomly assigned to an feFSH (n = 5) or EPE (n = 5) treatment. The experimental period was of 2 successive estrous cycles, with the first cycle as the control. At Days 6 and 7 of the estrous cycle, the mares received 250 micrograms i.m. cloprostenol. The treatments consisted of daily injections of 25 mg feFSH or EPE beginning on Day 6 post ovulation. Mares were inseminated every other day until the last ovulation was detected. When the mares in the control and treatment cycles developed at least 1 or 2 > or = 35-mm follicle, respectively, the treatment was interrupted, and a single injection of EPE (25 mg, i.v.) was administered to induce ovulation(s). Nonsurgical embryo recovery was performed 6 or 7 d after ovulation in both control and treatment cycles. The number of ovulations per mare was not significantly different (P > 0.05) between feFSH and EPE groups, but both were higher (P < 0.05) than that of the control cycle. The number of recovered embryos per ovulation was similar (P > 0.05) for control, feFSH and EPE groups. The high amount of LH presented in EPE did not affect the superovulatory response of the mares. Superovulatory treatments increased the ovulation rate of mares but did not affect the embryo recovery rate per ovulation.  相似文献   

8.
The only gonadotrophin preparation shown to stimulate commercially useful multiple ovulation in mares is equine pituitary extract (EPE); even then, the low and inconsistent ovulatory response has been ascribed to the variable, but high, LH content. This study investigated the effects of an LH-free FSH preparation, recombinant human follicle stimulating hormone (rhFSH), on follicle development, ovulation and embryo production in mares. Five mares were treated twice-daily with 450 i.u. rhFSH starting on day 6 after ovulation, coincident with PGF(2alpha) analogue administration; five control mares were treated similarly but with saline instead of rhFSH. The response was monitored by daily scanning of the mares' ovaries and assay of systemic oestradiol-17beta and progesterone concentrations. When the dominant follicle(s) exceeded 35 mm, ovulation was induced with human chorionic gonadotrophin; embryos were recovered on day 7 after ovulation. After an untreated oestrous cycle to 'wash-out' the rhFSH, the groups were crossed-over and treated twice-daily with 900 i.u. rhFSH, or saline. At the onset of treatment, the largest follicle was <25 mm in all mares, and mares destined for rhFSH treatment had at least as many 10-25 mm follicles as controls. However, neither dose of rhFSH altered the number of days before the dominant follicle(s) reached 35 mm, the number of follicles of any size class (10-25, 25-35, >3 mm) at ovulation induction, the pre- or post-ovulatory oestradiol-17beta or progesterone concentrations, the number of ovulations or the embryo yield. It is concluded that rhFSH, at the doses used, is insufficient to stimulate multiple follicle development in mares.  相似文献   

9.
This study was conducted to test the hypothesis that supplementation of growing follicles with LH during the early spring transitional period would promote the development of steroidogenically active, dominant follicles with the ability to respond to an ovulatory dose of hCG. Mares during early transition were randomly assigned to receive a subovulatory dose of equine LH (in the form of a purified equine pituitary fraction) or saline (transitional control; n = 7 mares per group) following ablation of all follicles >15 mm. Treatments were administered intravenously every 12 h from the day the largest follicle of the post-ablation wave reached 20 mm until a follicle reached >32 mm, when an ovulatory dose of hCG (3000 IU) was given. Saline-treated mares during June and July were used as ovulatory controls. In a preliminary study, injection of this pituitary fraction (eLH) to anestrus mares was followed by an increase in circulating levels of LH (P < 0.01) but not FSH (P > 0.6). Administration of eLH during early transition stimulated the growth of the dominant follicle (Group x Day, P < 0.00001), which attained diameters similar to the dominant follicle in ovulatory controls (P > 0.1). In contrast, eLH had no effect on the diameter of the largest subordinate follicle or the number of follicles >10 mm during treatment (P > 0.3). The numbers of mares that ovulated in response to hCG in transitional control, transitional eLH and ovulatory control groups (2 of 2, 3 of 5 and 7 of 7, respectively) were not significantly different (P > 0.1). However, after hCG-induced ovulation, all transitional mares returned to an anovulatory state. Circulating estradiol levels increased during the experimental period in ovulatory controls but not in transitional eLH or transitional control groups (Group x Day, P = 0.013). In addition, although progesterone levels increased after ovulation in transitional control and transitional eLH groups, levels in these two groups were lower than in the ovulatory control group after ovulation (Group, P = 0.045). In conclusion, although LH supplementation of early transitional waves beginning after the largest follicle reached 20 mm promoted growth of ovulatory-size follicles, these follicles were developmentally deficient as indicated by their reduced steroidogenic activity.  相似文献   

10.
An experiment was conducted to evaluate the role of the dominant follicle (DF) of the first wave in regulating follicular and ovulatory responses and embryonic yield to a superovulation regime with FSH-P. Twenty normally cycling Holstein-Freisian heifers (n = 20) were synchronized with GnRH and pgf(2alpha) and randomly assigned to a control or a treated group (n = 10 each). Treated heifers had the first wave dominant follicle removed via transvaginal, ultrasound-guided aspiration on Day 6 after a synchronized estrus. All heifers received a total of 32 mg FSH-P given in decreasing doses at 12 h intervals from Day 8 to Day 11 plus two injections of pgf(2alpha) (35 mg and 20 mg, respectively) on Day 10. Heifers were inseminated at 6 h and 16 h after onset of estrus. Follicular dynamics were examined daily by transrectal ultrasonography from Day 4 to estrus, once following ovulation, and at the time of embryo collection on Day 7. Blood samples were collected daily during the superovulatory treatment and at embryo collection. Follicles were classified as: small, /= 10 mm. Aspiration of the dominant follicle was associated with an immediate decrease in large follicles, and a linear rate increase in small follicles from Day 4 to Day 8 just prior to the FSH-P injections, (treatment > control: +0.33 vs. -0.22, number of small follicles per day; P < 0.10). During FSH-P injections, the increase in number of medium follicles was greater (P < 0.01) for treatment on Day 9-11 (treatment > control: Day 9, 3.2 > 1.8; Day 10, 9.2 > 4.7; Day 11, 13.1 > 8.3; +/- 0.56). Number of large follicles was greater in treatment at Day 11 (5.12 > 1.4 +/-0.21; P < 0.01). Mean number of induced ovulatory follicles (difference between number of follicles at estrus and Day 2 after estrus) was greater in treatment (13.4 > 6.3 +/- 1.82; P < 0.01). Plasma estradiol at Day 11 during FSH-P treatment was greater in treatment (32.5 > 15.8 +/- 2.6; P < 0.01). Plasma progesterone at embryo flushing (Day 7 after ovulation) was greater in treatment (7.4 > 4.9; P < 0.02); technical difficulties at embryo recovery reduced sensitivity of embryonic measurements. No changes in the distribution of unfertilized oocytes and embryo developmental stages were detected between control and treatment groups. Presence of dominant follicle of the first wave inhibited intraovarian follicular responses to exogenous FSH.  相似文献   

11.
Because cow ovaries do not contain a dominant follicle before Day 3 of the estrous cycle, we hypothesized that gonadotropin treatment early in the estrous cycle would induce growth of multiple follicles and could be used to induce superovulation. In Experiment 1, when 16 cows were treated with FSH-P beginning on Day 2 of the estrous cycle and were slaughtered on Day 5, all cows responded to gonadotropin treatment by exhibiting a large number ( approximately 19) of estrogenactive follicles >/= 6 mm. In Experiment 2, in response to FSH-P treatment from Day 2 to Day 7, and fenprostalene treatment on Day 6, 11 of 15 cows exhibited estrus and had a mean ovulation rate of 23.7 +/- 1.5. In Experiment 3, an FSH-P treatment regimen identical to that used in Experiment 2 was administered to cows beginning either on Day 2 (Day-2 cows; n=14) or Day 10 (Day-10 cows; n=11) of the estrous cycle. Twelve of 14 Day-2 cows and all Day-10 cows exhibited estrus after fenprostalene treatment. Day-2 cows exhibited 34.3 +/- 7.0 ovulations, which was less (P < 0.05) than that exhibited by Day-10 cows (48.3 +/- 4.4). However, the proportion of embryos recovered per corpus luteum was about 2-fold greater (P < 0.05) for Day-2 cows than for Day-10 cows (0.49 +/- 0.08 vs 0.27 +/- 0.06). These data indicate that beginning gonadotropin treatment early in the estrous cycle, when a dominant follicle is not present, provides an efficacious means to induce growth of multiple follicles and superovulation in cows. However, when FSH was administered for 6 d, beginning the treatment on Day 10 also resulted in a consistent and efficacious response.  相似文献   

12.
Seasonally anovulatory mares were injected, i.m., twice daily with a GnRH analogue (GnRH-A), and hCG was given when the largest follicle reached 35 mm in diameter. In Exp. 1, treatment was initiated on 23 December when the largest follicle per mare was less than or equal to 17 mm. An ovulatory response (ovulation within 21 days) occurred in 17 of 30 (57%) GnRH-A-treated mares on a mean of 15.8 days. The shortest interval to ovulation in control mares (N = 10) was 57 days. The diameter of the largest follicle first increased significantly 6 days after start of treatment. In Exp. 2, treatment was begun on 15 January and mares were categorized according to the largest follicle at start of treatment. The proportion of mares ovulating within 21 days increased significantly according to initial diameter of largest follicle (less than or equal to 15 mm, 9/25 mares ovulated; 15-19 mm, 13/21; 20-24 mm, 20/24; greater than 25 mm, 3/3). The multiple ovulation rate was greater (P less than 0.01) for treated mares (27/86 mares had multiple ovulations) than for control mares (2/35). Treated mares in which the largest follicle at start of treatment was greater than or equal to 25 mm had a higher (P less than 0.01) multiple ovulation rate (9/14) than did mares in which the largest follicle was less than 25 mm (18/72). The pregnancy rate for single ovulators was not different between control mares (26/30 pregnant mares) and treated mares (43/54).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Sixty-two non-cycling mares were classified according to the size of largest follicles at the time of treatment with Prostalene, an analogue of prostaglandin (PG) F-2 alpha. Although oestrus occurred in only 77.4% of mares, 98.4% ovulated at an average of 6.8 days after treatment. Greatest variance of interval to ovulation was observed in mares having follicles greater than or equal to 40 mm at the time of treatment. This was due to regression of large follicles about one-third of the time and later ovulation of a succeeding follicle. This resulted also in greatest uncertainty of prediction of ovulation time based on ovarian palpation. Ninety foaling mares were given Prostalene at various days following the first ovulation post partum. Ovulation less than 6 days after treatment was strongly associated with the presence of a large follicle on the day of treatment. Otherwise most (72%) ovulations occurred 6--10 days after treatment. The distribution of interovulatory periods resulting from Prostalene on Day 6 after ovulation differed from that of Day 8 treatment.  相似文献   

14.
The dynamics of ovarian follicular development depend on a timely interaction of gonadotropins and gonadal feedback in the mare. The development and efficacy of genetically cloned recombinant equine gonadotropins (reFSH and reLH) increase follicular activity and induce ovulation, respectively, but an optimum embryo recovery regimen in superovulated mares has not been established. The objective of this study was to determine if treatment with reFSH followed by reLH would increase the embryo per ovulation ratio and the number of embryos recovered after superovulation in mares. Sixteen estrous cycling mares of light horse breeds (4-12 years) were randomly assigned to one of two groups: Group 1; reFSH (0.65mg)/PBS (n=8) and Group 2; reFSH (0.65mg)/reLH (1.5mg) (n=8). On the day of a 22-25mm follicle post-ovulation mares were injected IV twice daily with reFSH for 3 days (PGF(2α) given IM on the second day of treatment) and once per day thereafter until a follicle or cohort of follicles reached 29mm after which either PBS or reLH was added and both groups injected IV twice daily until the presence of a 32mm follicles, when reFSH was discontinued. Thereafter, mares were injected three times daily IV with only PBS or reLH until a majority of follicles reached 35-38mm when treatment was discontinued. Mares were given hCG IV (2500IU) to induce ovulation and bred. Embryo recovery was performed on day 8 day post-treatment ovulation. Daily jugular blood samples were collected from the time of first ovulation until 8 days post-treatment ovulation. Blood samples were analyzed for LH, FSH, estradiol, progesterone and inhibin by validated RIA. Duration of treatment to a ≥35mm follicle(s) and number of ovulatory size follicles were similar between reFSH/reLH and reFSH/PBS treated mares. The number of ovulations was greater (P<0.01) in the reFSH/reLH group, while the number of anovulatory follicles was less (P<0.05) compared to the reFSH/PBS group. Number of total embryos recovered were greater in reFSH/reLH mares than in the reFSH/PBS mares (P≤0.01). The embryo per ovulation ratio tended to be greater (P=0.07) in the reFSH/reLH mares. Circulating concentrations of estradiol, inhibin, LH and progesterone were not statistically different between groups. Plasma concentrations of FSH were less (P<0.01) in the reFSH/reLH treated mares on days 0, 1, 4, 6, 7 and 8 post-treatment ovulation. In summary, reFSH with the addition of reLH, which is critical for final follicular and oocyte maturation, was effective in increasing the number of ovulations and embryos recovered, as well as reduce the number of anovulatory follicles, making this a more viable option than treatment with reFSH alone. Further evaluation is needed to determine the dose and regimen of reFSH/reLH to significantly increase the embryo per ovulation ratio.  相似文献   

15.
This study examined the effect of treating mares with equine pituitary extract (EPE) alone or in combination with hCG on the recovery rate of immature follicles by transvaginal follicular aspiration (ovum pick-up; OPU). Ten normally cycling crossbred mares aged 3-15 years and weighing 350-400 kg were subjected to each of three treatments in a random sequence with each exposure to a new treatment separated by a rest cycle during which a spontaneous ovulation occurred. The treatments were (1) superovulated with 25mg EPE and treated with 2500 IU hCG, (2) superovulation with 25mg EPE, and (3) control (no exogenous treatment). Treatments 7 days after spontaneous ovulation; and all the follicles >10mm were aspirated 24h after the largest follicle achieved a diameter of 27-30 mm for control group, and most follicles reached 22-27 mm for the EPE alone treatment. To the group EPE+hCG, when the follicles reached 22-27 mm, hCG was administered, 24h before OPU. Superovulation increased the number of follicles available for aspiration. The total number of follicles available for aspiration was 61 in the EPE/hCG group, 63 in the EPE group and 42 in the control. The proportion of follicles aspirated varied from 63.5% to 73.8%. Oocyte recovery rate ranged from 15.0% to 16.7% and the proportion of mares that yielded at least one oocyte was 70% (7/10) in the EPE/hCG, 60% (6/10) in the EPE alone and 50% (5/10) in control group. The EPE/hCG treatment had a higher proportion of follicles with expanded granulose cells (64.4%) than the control (3.3%; p<0.05) and the EPE treatment (25.0%). The intervals from spontaneous ovulation to aspiration were similar for all treatments (11-12 days). However, superovulatory treatment significantly increased the aspiration to ovulation interval from 15+/-4 days for control to 27+/-15 days for EPE (p<0.05) and to 23+/-13 days for EPE/hCG treatment with commensurate increases in the time between spontaneous ovulations.  相似文献   

16.
Watson ED  Sertich PL  Hunt PR 《Theriogenology》1992,37(5):1075-1083
Follicular growth and ovulation were monitored in 18 horse mares during a control cycle and during a cycle in which the mares received a GnRH agonist, leuprolide acetate (LA; 200 or 400 mug), twice daily until ovulation. Prior to both of these cycles, follicular growth was suppressed using a 10-day estrogen-progesterone treatment regimen, with prostaglandin F-2alpha (10 mg) administered on Day 10. Four of the mares treated with LA remained anovulatory for at least 3 weeks after the end of treatment and were excluded from statistical analysis. The dosage of LA did not affect response. Treatment with LA significantly (P=0.0375) increased the percentage of large follicles per ovulation (i.e., follicles greater than 30 mm in diameter on the day on which the largest follicle reached 35 mm) and also increased (P=0.0539) the diameter of the second largest follicle. However LA did not significantly alter the number of ovulations. Mean daily concentrations of luteinizing hormone (LH) were not significantly different during treatment and control cycles. The LH in blood samples collected repeatedly on Day 19 after the start of estrogen-progesterone treatment did not show a difference in frequency or amplitude of pulses between treatment and control cycles. Mares were artificially inseminated during estrus and the embryos were recovered. Fewer embryos were recovered per ovulation from mares after treatment with LA (26%) than during the control cycle (64%). Results indicate that treatment with LA either suppressed follicular activity or induced multiple follicular growth.  相似文献   

17.
It has been suggested that superovulation in cattle is impaired if FSH injections are initiated in the presence of a dominant follicle, but the results of experiments to test this hypothesis have been contradictory. However, previous experiments were conducted during mid-cycle, when the absence or presence of a dominant follicle is difficult to assess. We took a different approach by comparing the effects of initiating superovulatory injections of FSH (11 equal doses of FSH-P, every 12 h) on Day 1 of the bovine estrous cycle, when a dominant follicle clearly is not present, vs initiation on Day 6, when a dominant follicle clearly is present and actively growing (n = 17 heifers in a "crossover" design). In 8 17 heifers initiation of FSH injections in the presence of a dominant follicle (Day 6 group) caused ovulation of the dominant follicle within 1 to 2 days and formation of a smaller than normal CL. These animals had higher than normal concentrations of plasma progesterone around the time of expected estrus (P < 0.05) and failed to exhibit estrus. Although the mean number and diameter of the follicles recruited in response to FSH injections in heifers that ovulated the dominant follicle prematurely were not different from the other heifers in the Day 6 group, no ovulations were observed, and no embryos or ova were recovered 6 d after insemination. Conversely, when FSH injections were initiated on Day 1 in these 8 heifers, they exhibited estrus, and their plasma progesterone around the time of estrus, mean ovulation rate, and number of total and transferable embryos recovered did not differ from the responses observed in the remaining 9 heifers treated either on Day 1 or on Day 6. Taken together, these results indicate that a dominant follicle does not affect the ability of smaller follicles to be recruited in response to exogenous FSH, but may impair their ovulation. These findings provide an explanation for previous reports of decreased superovulatory responses during times of the cycle when a dominant follicle would be expected to be present.  相似文献   

18.
Equine pituitary fractions were used to induce ovulation in seasonally-anovulatory pony mares. Over three experiments, 87% of mares ovulated following twice daily injections for 14 days of equine pituitary fractions. Of the mares which ovulated, 58% had 2 or more ovulations/estrus.  相似文献   

19.
Equine pituitary extract (EPE) has been reported to induce heightened follicular development in mares, but the response is inconsistent and lower than results obtained in ruminants undergoing standard superovulatory protocols. Three separate experiments were conducted to improve the ovarian response to EPE by evaluating: (1) effect of increasing the frequency or dose of EPE treatment; (2) use of a potent gonadotropin-releasing hormone agonist (GnRH-a) prior to EPE stimulation; (3) administration of EPE twice daily in successively decreasing doses. In the first experiment, 50 mares were randomly assigned to one of four treatment groups. Mares received (1) 25 mg EPE once daily; (2) 50 mg EPE once daily; (3) 12.5 mg EPE twice daily; or (4) 25 mg EPE twice daily. All mares began EPE treatment 5 days after detection of ovulation and received a single dose of cloprostenol sodium 7 days postovulation. EPE was discontinued once half of a cohort of follicles reached a diameter of >35 mm and hCG was administered. Mares receiving 50 mg of EPE once daily developed a greater number (P = 0.008) of preovulatory follicles than the remaining groups of EPE-treated mares, and more (P = 0.06) ovulations were detected for mares receiving 25 mg EPE twice daily compared to those receiving either 25 mg EPE once daily and 12.5 mg EPE twice daily. Embryo recovery per mare was greater (P = 0.05) in the mares that received 12.5 mg EPE twice daily than those that received 25 mg EPE once daily. In Experiment 2, 20 randomly selected mares received either 25 mg EPE twice daily beginning 5 days after a spontaneous ovulation, or two doses of a GnRH-a agonist upon detection of a follicle >35 mm and 25 mg EPE twice daily beginning 5 days after ovulation. Twenty-four hours after administration of hCG, oocytes were recovered by transvaginal aspiration from all follicles >35 mm. No differences were observed between groups in the numbers of preovulatory follicles generated (P = 0.54) and oocytes recovered (P = 0.40) per mare. In Experiment 3, 18 mares were randomly assigned to one of two treatment groups. Then, 6-11 days after ovulation, mares were administered a dose of PGF2, and concomitantly began twice-daily treatments with EPE given in successively declining doses, or a dose of PGF2alpha, but no EPE treatment. Mares administered EPE developed a higher (P = 0.0004) number of follicles > or = 35 mm, experienced more (P = 0.02) ovulations, and yielded a greater (P = 0.0006) number of embryos than untreated mares. In summary, doubling the dose of EPE generated a greater ovarian response, while increasing the frequency of treatment, but not necessarily the dose, improved embryo collection. Additionally, pretreatment with a GnRH-a prior to ovarian stimulation did not enhance the response to EPE or oocyte recovery rates.  相似文献   

20.
Mares treated with subcutaneous deslorelin implants on the first postpartum estrus early in the breeding season had significant reductions in the number of large follicles at early pregnancy examinations and delayed return to estrus (in mares that failed to become pregnant); these adverse effects were attributed to a prolonged release of the drug from the implant. In 2003, an injectable short-term release (<24 h) deslorelin product became available. The objective of this study was to determine if this product would hasten ovulation in early foaling first postpartum estrus mares without reducing the number of large follicles at early pregnancy examination (14-15 days postovulation). Beginning 5-6 days postpartum, first postpartum estrus (foal-heat) mares were teased daily and examined thrice weekly (Tuesday, Thursday and Saturday) by transrectal ultrasonography. Mares in estrus with a follicle > or = 34 mm diameter on Tuesdays or Thursdays were alternately assigned to: Treatment 1, n = 17; 1.5 mg injectable short-term release deslorelin, or Treatment 2, n = 16; Control (no treatment). The schedule allowed accurate determination of the number of mares ovulating within 2 days of treatment (i.e., ovulations detected on Thursday or Saturday). Mares were mated on the day of treatment and at 2-day intervals until either ovulation was confirmed or until behavioral estrus ceased. Transrectal ultrasonography was done 14-15 days after ovulation to assess ovarian follicles and pregnancy status. Fewer covers were required and more mares ovulated within 2 days of treatment in deslorelin-treated versus Control mares (P < 0.01). Pregnancy rates were normal (69%) in deslorelin-treated mares. The number of large follicles 14-15 days after ovulation did not differ between deslorelin-treated and Control mares (P > 0.10), suggesting follicular suppression did not occur with this formulation of deslorelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号