首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multifunctional protein (MFP) of peroxisomal beta-oxidation catalyses four separate reactions, two of which (2-trans enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase) are core activities required for the catabolism of all fatty acids. We have isolated and characterized five Arabidopsis thaliana mutants in the MFP2 gene that is expressed predominantly in germinating seeds. Seedlings of mfp2 require an exogenous supply of sucrose for seedling establishment to occur. Analysis of mfp2-1 seedlings revealed that seed storage lipid was catabolized more slowly, long-chain acyl-CoA substrates accumulated and there was an increase in peroxisome size. Despite a reduction in the rate of beta-oxidation, mfp2 seedlings are not resistant to the herbicide 2,4-dichlorophenoxybutyric acid, which is catabolized to the auxin 2,4-dichlorophenoxyacetic acid by beta-oxidation. Acyl-CoA feeding experiments show that the MFP2 2-trans enoyl-CoA hydratase only exhibits activity against long chain (C18:0) substrates, whereas the MFP2 L-3-hydroxyacyl-CoA dehydrogenase is active on C6:0, C12:0 and C18:0 substrates. A mutation in the abnormal inflorescence meristem gene AIM1, the only homologue of MFP2, results in an abnormal inflorescence meristem phenotype in mature plants (Richmond and Bleecker, Plant Cell 11, 1999, 1911) demonstrating that the role of these genes is very different. The mfp2-1 aim1double mutant aborted during the early stages of embryo development showing that these two proteins share a common function that is essential for this key stage in the life cycle.  相似文献   

2.
3.
Allenbach L  Poirier Y 《Plant physiology》2000,124(3):1159-1168
Degradation of fatty acids having cis-double bonds on even-numbered carbons requires the presence of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. Two alternative pathways have been described to degrade these fatty acids. One pathway involves the participation of the enzymes 2, 4-dienoyl-coenzyme A (CoA) reductase and Delta(3)-Delta(2)-enoyl-CoA isomerase, whereas the second involves the epimerization of R-3-hydroxyacyl-CoA via a 3-hydroxyacyl-CoA epimerase or the action of two stereo-specific enoyl-CoA hydratases. Although degradation of these fatty acids in bacteria and mammalian peroxisomes was shown to involve mainly the reductase-isomerase pathway, previous analysis of the relative activity of the enoyl-CoA hydratase II (also called R-3-hydroxyacyl-CoA hydro-lyase) and 2,4-dienoyl-CoA reductase in plants indicated that degradation occurred mainly through the epimerase pathway. We have examined the implication of both pathways in transgenic Arabidopsis expressing the polyhydroxyalkanoate synthase from Pseudomonas aeruginosa in peroxisomes and producing polyhydroxyalkanoate from the 3-hydroxyacyl-CoA intermediates of the beta-oxidation cycle. Analysis of the polyhydroxyalkanoate synthesized in plants grown in media containing cis-10-heptadecenoic or cis-10-pentadecenoic acids revealed a significant contribution of both the reductase-isomerase and epimerase pathways to the degradation of these fatty acids.  相似文献   

4.
The beta-oxidation of 2-trans,4-cis-decadienoyl-CoA, an assumed metabolite of linoleic acid, by purified enzymes from mitochondria, peroxisomes, and Escherichia coli was studied. 2-trans,4-cis-Decadienoyl-CoA is an extremely poor substrate of the beta-oxidation system reconstituted from mitochondrial enzymes. The results of a kinetic evaluation lead to the conclusion that in mitochondria 2-trans,4-cis-decadienoyl-CoA is not directly beta-oxidized, but instead is reduced by NADPH-dependent 2,4-dienoyl-CoA reductase prior to its beta-oxidation. Hence, the mitochondrial beta-oxidation of 2-trans,4-cis-decadienoyl-CoA does not require 3-hydroxyacyl-CoA epimerase, a conclusion which agrees with the finding that 3-hydroxyacyl-CoA epimerase is absent from mitochondria (Chu, C.-H., and Schulz, H. (1985) FEBS Lett. 185, 129-134). However, 2-trans,4-cis-decadienoyl-CoA can be slowly oxidized by the bifunctional beta-oxidation enzyme from rat liver peroxisomes, as well as by the fatty acid oxidation complex from E. coli. The observed rates of 2-trans,4-cis-decadienoyl-CoA degradation by these two multi-functional proteins were significantly higher than the values calculated according to steady-state velocity equations derived for coupled enzyme reactions. This is attributed to the direct transfer of L-3-hydroxy-4-cis-decenoyl-CoA from the active site of enoyl-CoA hydratase to that of 3-hydroxyacyl-CoA dehydrogenase on the same protein molecule. All observations together lead to the suggestion that the chain shortening of 2-trans,4-cis-decadienoyl-CoA in peroxisomes and in E. coli occurs simultaneously by two different pathways. The major pathway involves the NADPH-dependent 2,4-dienoyl-CoA reductase, whereas 3-hydroxyacyl-CoA epimerase functions in the metabolism of D-3-hydroxyoctanoyl-CoA which is formed via the minor pathway.  相似文献   

5.
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.  相似文献   

6.
The mitochondrial metabolism of unsaturated fatty acids with conjugated double bonds at odd-numbered positions, e.g. 9-cis, 11-trans-octadecadienoic acid, was investigated. These fatty acids are substrates of beta-oxidation in isolated rat liver mitochondria and hence are expected to yield 5,7-dienoyl-CoA intermediates. 5, 7-Decadienoyl-CoA was used to study the degradation of these intermediates. After introduction of a 2-trans-double bond by acyl-CoA dehydrogenase or acyl-CoA oxidase, the resultant 2,5, 7-decatrienoyl-CoA can either continue its pass through the beta-oxidation cycle or be converted by Delta3,Delta2-enoyl-CoA isomerase to 3,5,7-decatrienoyl-CoA. The latter compound was isomerized by a novel enzyme, named Delta3,5,7,Delta2,4, 6-trienoyl-CoA isomerase, to 2,4,6-decatrienoyl-CoA, which is a substrate of 2,4-dienoyl-CoA reductase (Wang, H.-Y. and Schulz, H. (1989) Biochem. J. 264, 47-52) and hence can be completely degraded via beta-oxidation. Delta3,5,7,Delta2,4,6-Trienoyl-CoA isomerase was purified from pig heart to apparent homogeneity and found to be a component enzyme of Delta3,5,Delta2,4-dienoyl-CoA isomerase. Although the direct beta-oxidation of 2,5,7-decatrienoyl-CoA seems to be the major pathway, the degradation via 2,4,6-trienoyl-CoA makes a significant contribution to the total beta-oxidation of this intermediate.  相似文献   

7.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

8.
In Arabidopsis, floral meristems arise in continuous succession directly on the flanks of the inflorescence meristem. Thus, the pathways that regulate inflorescence and floral meristem identity must operate both simultaneously and in close spatial proximity. The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis is required for normal inflorescence meristem function, and the LEAFY (LFY), APETALA 1 (AP1), and APETALA 2 (AP2) genes are required for normal floral meristem function. We present evidence that inflorescence meristem identity is promoted by TFL1 and that floral meristem identity is promoted by parallel developmental pathways, one defined by LFY and the other defined by AP1/AP2. Our analysis suggests that the acquisition of meristem identity during inflorescence development is mediated by antagonistic interactions between TFL1 and LFY and between TFL1 and AP1/AP2. Based on this study, we propose a simple model for the genetic regulation of inflorescence development in Arabidopsis. This model is discussed in relation to the proposed interactions between the inflorescence and the floral meristem identity genes and in regard to other genes that are likely to be part of the genetic hierarchy regulating the establishment and maintenance of inflorescence and floral meristems.  相似文献   

9.
The enzymes NAD-dependent beta-hydroxybutyryl coenzyme A dehydrogenase (BHBD) and 3-hydroxyacetyl coenzyme A (3-hydroxyacyl-CoA) dehydrogenase are part of the central fermentation pathways for butyrate and butanol production in the gram-positive anaerobic bacterium Clostridium acetobutylicum and for the beta oxidation of fatty acids in eucaryotes, respectively. The C. acetobutylicum hbd gene encoding a bacterial BHBD was cloned, expressed, and sequenced in Escherichia coli. The deduced primary amino acid sequence of the C. acetobutylicum BHBD showed 45.9% similarity with the equivalent mitochondrial fatty acid beta-oxidation enzyme and 38.4% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase from rat peroxisomes. The pig mitochondrial 3-hydroxyacyl-CoA dehydrogenase showed 31.7% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enzyme from rat peroxisomes. The phylogenetic relationship between these enzymes supports a common evolutionary origin for the fatty acid beta-oxidation pathways of vertebrate mitochondria and peroxisomes and the bacterial fermentation pathway.  相似文献   

10.
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.  相似文献   

11.
The multienzyme complex for fatty acid oxidation was purified from Pseudomonas fragi, which was grown on oleic acid as the sole carbon source. This complex exhibited enoyl-CoA hydratase [EC 4.2.1.17], 3-hydroxyacyl-CoA dehydrogenase [EC 1.1.1.35], 3-oxoacyl-CoA thiolase [EC 2.3.1.16], cis-3,trans-2-enoyl-CoA isomerase [EC 5.3.3.3], and 3-hydroxyacyl-CoA epimerase [EC 5.1.2.3] activities. The molecular weight of the native complex was estimated to be 240,000. Two types of subunits, with molecular weights of 73,000 and 42,000, were identified. The complex was composed of two copies each of the 73,000- and 42,000-Da subunits. The beta-oxidation system was reconstituted in vitro using the multienzyme complex, acyl-CoA synthetase and acyl-CoA oxidase. This reconstituted system completely oxidized saturated fatty acids with acyl chains of from 4 to 18 carbon atoms as well as unsaturated fatty acids having cis double bonds extending from odd-numbered carbon atoms. However, unsaturated fatty acids having cis double bonds extending from even-numbered carbon atoms were not completely oxidized to acetyl-CoA: about 5 mol of acetyl-CoA was produced from 1 mol of linoleic or alpha-linolenic acid, and about 2 mol of acetyl-CoA from 1 mol of gamma-linolenic acid. These results suggested that the 3-hydroxyacyl-CoA epimerase in the complex was not operative. When the epimerase was by-passed by the addition of 2,4-dienoyl-CoA reductase to the reconstituted system, unsaturated fatty acids with cis double bonds extending from even-numbered carbon atoms were also completely degraded to acetyl-CoA.  相似文献   

12.
Fat-degrading cotyledons from cucumber seedlings were investigated with respect to the enzymes metabolizing cis-unsaturated fatty acids. Isolated glyoxysomes degrade linoleic acid, the dominating fatty acid in the storage tissue of the seed. Glyoxysomes were shown to be the sole intracellular site of enzymes responsible for the degradation of unsaturated fatty acids. All three auxiliary enzyme activities discussed for the degradation of polyunsaturated fatty acids, 2,4-dienoyl-CoA reductase, enoyl-CoA isomerase, and 3-hydroxyacyl-CoA epimerase were localized within the matrix of glyoxysomes. They were not found in mitochondria. Separation of glyoxysomal matrix proteins on CM-cellulose revealed that epimerase activity was attributable to the multifunctional protein and also to another protein which apparently exhibited no other beta-oxidation activity. Furthermore, on the basis of the high epimerase activity present in glyoxysomes compared to a much lower 2,4-dienoyl-CoA reductase activity, the metabolism of unsaturated fatty acids via delta 2-cis-enoyl-CoA is considered as alternative to the reductase-dependent pathway.  相似文献   

13.
LEAFY controls floral meristem identity in Arabidopsis.   总被引:96,自引:0,他引:96  
The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the mutant phenotype, we find that LEAFY RNA is expressed strongly in young flower primordia. LEAFY expression procedes expression of the homeotic genes AGAMOUS and APETALA3, which specify organ identify within the flower. Furthermore, we demonstrate that LEAFY is the Arabidopsis homolog of the FLORICAULA gene, which controls floral meristem identity in the distantly related species Antirrhinum majus.  相似文献   

14.
15.
Bonhomme  F.  Sommer  H.  Bernier  G.  Jacqmard  A. 《Plant molecular biology》1997,34(4):573-582
SaMADS D gene of Sinapis alba was isolated by screening a cDNA library from young inflorescences with a mixture of MADS-box genes of Antirrhinum majus (DEF, GLO, SQUA) as probe. Amino acid sequence comparison showed a high degree of similarity between the SaMADS D and AGL9, DEFH200, TM5, FBP2 and DEFH 72 gene products. Analysis of the SaMADS D gene expression by in situ hybridization reveals a novel expression pattern for a MADS-box gene and suggests a dual function for this gene: first, as a determinant in inflorescence meristem identity since it starts to be expressed directly beneath the inflorescence meristem at the time of initiation of the first floral meristem, is no longer expressed in the inflorescence meristem forced to revert to production of leafy appendages, and is expressed again when the reverted meristem resumes floral meristem initiation, and, second, as an interactor with genes specifying floral organ identity since it is expressed in the floral meristem from the stage of sepal protrusion.  相似文献   

16.
An Escherichia coli mutant (fadB64), with a defective L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) which is unable to grow on long-chain fatty acids as the sole carbon source, was shown to possess a fatty acid oxidation complex that contains five beta-oxidation enzymes, including L-3-hydroxyacyl-CoA dehydrogenase. A comparative study of the complexes from the mutant, from its parental strain and from wild-type E. coli B demonstrated the immunological and gross structural identity of all three fatty acid oxidation complexes. A kinetic evaluation of the complexes led to the suggestion that the mutation may have affected the active site of L-3-hydroxyacyl-CoA dehydrogenase so that it is inactive with acetoacetyl-CoA as a substrate, but exhibits an increasing percentage of the parental dehydrogenase activity with increasing chain length of the substrate.  相似文献   

17.
In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and PNF interact with a subset of KNOTTED1-LIKE homeobox proteins including SHOOT MERISTEMLESS (STM). Genetic analyses show that these BLH proteins function with STM to specify flowers and internodes during inflorescence development. In this study, experimental evidence demonstrates that the specification of flower and coflorescence meristems requires the combined activities of FT-FD and STM. FT and FD also regulate meristem maintenance during inflorescence development. In plants with reduced STM function, ectopic FT and FD promote the formation of axillary meristems during inflorescence development. Lastly, gene expression studies indicate that STM functions with FT-FD and AGAMOUS-LIKE 24 (AGL24)-SUPPRESSOR OF OVEREXPRESSION OF CONTANS1 (SOC1) complexes to up-regulate flower meristem identity genes during inflorescence development.  相似文献   

18.
Peroxisomal beta-oxidation system consists of peroxisome proliferator-activated receptor alpha (PPARalpha)-inducible pathway capable of catalyzing straight-chain acyl-CoAs and a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs. Disruption of the inducible beta-oxidation pathway in mice at the level of fatty acyl-CoA oxidase (AOX), the first and rate-limiting enzyme, results in spontaneous peroxisome proliferation and sustained activation of PPARalpha, leading to the development of liver tumors, whereas disruptions at the level of the second enzyme of this classical pathway or of the noninducible system had no such discernible effects. We now show that mice with complete inactivation of peroxisomal beta-oxidation at the level of the second enzyme, enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase (L-PBE) of the inducible pathway and D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase (D-PBE) of the noninducible pathway (L-PBE-/-D-PBE-/-), exhibit severe growth retardation and postnatal mortality with none surviving beyond weaning. L-PBE-/-D-PBE-/- mice that survived exceptionally beyond the age of 3 weeks exhibited overexpression of PPARalpha-regulated genes in liver, despite the absence of morphological evidence of hepatic peroxisome proliferation. These studies establish that peroxisome proliferation in rodent liver is highly correlatable with the induction mostly of the L- and D-PBE genes. We conclude that disruption of peroxisomal fatty acid beta-oxidation at the level of second enzyme in mice leads to the induction of many of the PPARalpha target genes independently of peroxisome proliferation in hepatocytes, raising the possibility that intermediate metabolites of very long-chain fatty acids and peroxisomal beta-oxidation act as ligands for PPARalpha.  相似文献   

19.
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.  相似文献   

20.
TFL1同源基因在维持植物营养生长和花序分生组织特性方面起着非常重要的作用,其功能的丧失常导致植物提早开花,花序的正常发育受到抑制,最终茎端形成顶花。至今已经有28种植物的TFL1基因被克隆到,其中包括拟南芥、金鱼草和番茄等模式植物。TFL1 蛋白的系统发育树基本符合物种的亲缘关系。作为花序分生组织特性基因的TFL1与花分生组织特性基因LFY 和AP1相互作用,抑制花序分生组织向花分生组织的转变。TFL1和LFY等基因可用来培育早花新品种,也可用于培育无果的新品种,减少悬铃木、杨、柳等果毛的污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号