共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular ATP plays an important role in the regulation of renal function. However, the effect of ATP on the Na+-glucose cotransporters (SGLTs) has not been elucidated in proximal tubule cells (PTCs). Therefore, this study was performed to examine the action of ATP on SGLTs and their related signal pathways in primary cultured rabbit renal PTCs. ATP increased [14C]--methyl-D-glucopyranoside (-MG) uptake in a time-dependent (>1 h) and dose-dependent (>106 M) manner. ATP stimulated -MG uptake by increasing in Vmax without affecting Km. ATP-induced increase of -MG uptake was correlated with the increase in both SGLT1 and SGLT2 protein expression levels. ATP-induced stimulation of -MG uptake was blocked by suramin (nonspecific P2 receptor antagonist), RB-2 (P2Y receptor antagonist), and MRS-2179 (P2Y1 receptor antagonist), suggesting a role for the P2Y receptor. ATP-induced stimulation of -MG uptake was blocked by pertussis toxin (PTX, a Gi protein inhibitor), SQ-22536 (an adenylate cyclase inhibitor), and PKA inhibitor amide 14-22 (PKI). ATP also increased cAMP formation, which was blocked by PTX and RB-2. However, pretreatment of adenosine deaminase did not block ATP-induced cAMP formation. In addition, ATP-induced stimulation of -MG uptake was blocked by SB-203580 (p38 MAPK inhibitor), but not by PD-98059 (p44/42 MAPK inhibitor) or SP-600125 (JNK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK. In conclusion, ATP increases -MG uptake via cAMP and p38 MAPK in renal PTCs. adenosine 5'-triphosphate; mitogen-activated protein kinase 相似文献
2.
3.
We have examined the effect of dopamine on Ca(2+) uptake and its related signaling pathways in primary renal proximal tubule cells (PTCs). Dopamine increased Ca(2+) uptake in a concentration (>10(-10) M) and time- (>8 h) dependent manner. Dopamine-induced increase in Ca(2+) uptake was prevented by SCH 23390 (a DA(1) antagonist) rather than spiperone (a DA(2) antagonist). SKF 38393 (a DA(1) agonist) increased Ca(2+) uptake unlike the case with quinpirole (a DA(2) agonist). Dopamine-induced increase in Ca(2+) uptake was blocked by nifedipine and methoxyverapamil (L-type Ca(2+) channel blockers). Moreover, dopamine-induced increase in Ca(2+) uptake was blocked by pertussis toxin (a G(i) protein inhibitor), protein kinase A (PKA) inhibitor amide 14/22 (a PKA inhibitor), and SQ 22536 (an adenylate cyclase inhibitor). Subsequently, dopamine increased cAMP level. The PLC inhibitors (U 73122 and neomycin), the PKC inhibitors (staurosporine and bisindolylmaleimide I) suppressed the dopamine-induced increase of Ca(2+) uptake. SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a MAPKK inhibitor) also inhibited the dopamine-induced increase of Ca(2+) uptake. Dopamine-induced p38 and p42/44 MAPK phosphorylation was blocked by SQ 22536, neomycin, and staurosporine. The stimulatory effect of dopamine on Ca(2+) uptake was significantly inhibited by the NF-kappaB inhibitors SN50, TLCK, and Bay 11-7082. In addition, dopamine significantly increased the level of NF-kappaB p65, which was prevented by either SQ 22536, neomycin, staurosporine, PD 98059, or SB 203580. Thus, dopamine stimulates Ca(2+) uptake in PTCs, initially through by G(s) coupled dopamine receptors, PLC/PKC, followed by MAPK, and ultimately by NF-kappaB activation. 相似文献
4.
EGF stimulates proliferation of mouse embryonic stem cells: involvement of Ca2+ influx and p44/42 MAPKs 总被引:1,自引:0,他引:1
We examined the effect of EGF on the proliferation of mouse embryonic stem (ES) cells and their related signal pathways. EGF increased [3H]thymidine and 5-bromo-2'-deoxyuridine incorporation in a time- and dose-dependent manner. EGF stimulated the phosphorylation of EGF receptor (EGFR). Inhibition of EGFR tyrosine kinase with AG-1478 or herbimycin A, inhibition of PLC with neomycin or U-73122, inhibition of PKC with bisindolylmaleimide I or staurosporine, and inhibition of L-type Ca2+ channels with nifedipine or methoxyverapamil prevented EGF-induced [3H]thymidine incorporation. PKC-, -I, -, -, and - were translocated to the membrane and intracellular Ca2+ concentration ([Ca2+]i) was increased in response to EGF. Moreover, inhibition of EGFR tyrosine kinase, PLC, and PKC completely prevented EGF-induced increases in [Ca2+]i. EGF also increased inositol phosphate levels, which were blocked by EGFR tyrosine kinase inhibitors. Furthermore, EGF rapidly increased formation of H2O2, and pretreatment with antioxidant (N-acetyl-L-cysteine) inhibited EGF-induced increase of [Ca2+]i. In addition, we observed that p44/42 MAPK phosphorylation by EGF and inhibition of EGFR tyrosine kinase, PLC, PKC, or Ca2+ channels blocked EGF-induced phosphorylation of p44/42 MAPKs. Inhibition of p44/42 MAPKs with PD-98059 (MEK inhibitor) attenuated EGF-induced increase of [3H]thymidine incorporation. Finally, inhibition of EGFR tyrosine kinase, PKC, Ca2+ channels, or p44/42 MAPKs attenuated EGF-stimulated cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, and CDK4, respectively. In conclusion, EGF partially stimulates proliferation of mouse ES cells via PLC/PKC, Ca2+ influx, and p44/42 MAPK signal pathways through EGFR tyrosine kinase phosphorylation. calcium; epidermal growth factor; mitogen-activated protein kinases; protein kinase C 相似文献
5.
Epinephrine is a catecholamine that plays important roles in regulating a wide variety of physiological systems by acting through the adrenergic receptors (ARs). The cellular responses to AR stimulation are mediated through various signaling pathways. Therefore, this study examined the effects of epinephrine on DNA synthesis and related signaling molecules in mouse embryonic stem cells (ESCs). Epinephrine increased DNA synthesis in a dose- and time-dependent manner, as determined by the level of [(3)H]-thymidine incorporation. AR subtypes (alpha1(A), alpha2(A), beta1, beta2, and beta3) were expressed in mouse ESCs and their expression levels were increased by epinephrine. In this experiment, epinephrine increased cAMP levels, intracellular Ca(2+) concentration ([Ca(2+)](i)), and translocation of protein kinase C (PKC) from the cytosol to the membrane compartment. In addition, we observed Akt phosphorylation in response to epinephrine; this was stimulated by phosphorylation of the epidermal growth factor receptor (EGFR). Epinephrine also induced phosphorylation of ERK1/2 (p44/42 MAPKs), while inhibition of PKC or Akt blocked this phosphorylation. Epinephrine increased the mRNA levels of proto-oncogenes (c-fos, c-jun, c-myc), while inhibition of ERK1/2 decreased these mRNA levels. In experiments aimed at examining the involvement of cell cycle regulatory proteins, epinephrine increased the levels of cyclin E/cyclin-dependent kinase 2 (CDK2) and cyclin D1/cyclin-dependent kinase 4 (CDK4). In conclusion, epinephrine stimulates DNA synthesis via ERK1/2 through cAMP, Ca(2+)/PKC, and PI3K/Akt signaling pathways in mouse ESCs. 相似文献
6.
It has been reported that epidermal growth factor (EGF) and EGF receptor were highly expressed in embryo, suggesting that the EGF system is related to early embryo development in an autocrine and/or paracrine manner. Glucose becomes the preimplantation exogenous energy substrate and enters the blastocyst via glucose transporters. Thus, the effect of EGF on [3H]-2-deoxyglucose (2-DG) uptake and its related signaling pathways were examined in mouse embryonic stem (ES) cells. EGF significantly increased 2-DG uptake in time- and concentration- dependent manner (>12 hr, >10 ng/ ml) and increased mRNA and protein level of glucose transporter 1 (GLUT1) compared to control, respectively. Actinomycin D and cycloheximide completely blocked the effect of EGF on 2-DG uptake. EGF-induced increase of 2-DG uptake was blocked by AG1478 (EGF receptor tyrosine kinase blocker), genistein or herbimycin (tyrosine kinase inhibitors). In addition, EGF effect was blocked by neomycin and U 73122 [phospholipase C (PLC) inhibitors] as well as staurosporine and bisindolylmaleimide I [protein kinase C (PKC) inhibitors]. EGF was also observed to increase inositol phosphates (IPs) formation and activate a PKC translocation from the cytosolic to membrane fraction, suggesting a role of PLC and PKC. SB 203580 [p38 mitogen activated protein kinase (MAPK) inhibitor] or PD 98059 (p44/42 MAPKs inhibitor) blocked EGF-induced increase of 2-DG uptake. EGF also increased phosphorylation of p38 MAPK and p44/42 MAPKs, which was blocked by genistein or bisindolylmaleimide I, respectively. In conclusion, EGF partially increased 2-DG uptake via PKC, p38 MAPK, and p44/42 MAPKs in mouse ES cells. 相似文献
7.
Yanagida E Shoji S Hirayama Y Yoshikawa F Otsu K Uematsu H Hiraoka M Furuichi T Kawano S 《Cell calcium》2004,36(2):135-146
Mouse embryonic stem (mES) cells have the potential to differentiate into all types of cells, but the physiological properties of undifferentiated mES cells, including Ca2+ signaling systems, are not fully understood. In this study, we investigated Ca2+ signaling pathways in mES cells by using confocal Ca2+ imaging systems, patch clamp techniques and RT-PCR. The stimulations with ATP and histamine (His) induced a transient increase of intracellular Ca2+ concentration ([Ca2+]i), which were prevented by the pretreatment of 2-amino-ethoxydiphenyl borate (2-APB), a blocker for inositol-1,4,5-triphosphate receptors (InsP3Rs). The application of caffeine (Caff) or ryanodine (Ry) did not change [Ca2+]i. When stores were depleted with Ca2+ -ATPase blocker, thapsigargin (TG), or histamine, the capacitative Ca2+ entry (CCE) was observed. In whole cell patch clamp mode, store-operated Ca2+ currents could be recorded in cells treated with histamine and thapsigargin. On the other hand, voltage-operated Ca2+ channels (VOCCs) could not be elicited. The application of blockers for plasma membrane Ca2+ pump (PMCAs) (carboxeosin or caloxin2A1) induced a large increase of [Ca2+]i. When the Na+/Ca2+ exchangers (NCXs) were blocked by Na+ free solution or KBR7943, [Ca2+]i was also elevated. Using RT-PCR, mRNAs for InsP3Rs type-1, -2, and -3, PMCA-1 and -4, NCX-1, -2, and -3 could be detected. From these results, we conclude that Ca2+ release from ER is mediated by InsP3Rs in mES cells before differentiation and Ca2+ entry through plasma membrane is mainly mediated by the store-operated Ca2+ channels (SOCs). For the Ca2+ extrusion systems, both NCXs and PMCAs play important roles for maintaining the low level of [Ca2+]i. 相似文献
8.
Abstract. Objectives: The gap junction protein, connexin (Cx), plays an important role in maintaining cellular homeostasis and cell proliferation by allowing communication between adjacent cells. Therefore, this study has examined the effect of epidermal growth factor (EGF) on Cx43 and its relationship to proliferation of mouse embryonic stem cells. Materials and methods: Expressions of Cx43, mitogen‐activated protein kinases (MAPKs) and cell cycle regulatory proteins were assessed by Western blot analysis. Cell proliferation was assayed with [3H]thymidine incorporation. Intercellular communication level was measured by a scrape loading/dye transfer method. Results: The results showed that EGF increased the level of Cx43 phosphorylation in a time‐ (≥5 min) and dose‐ (≥10 ng/mL) dependent manner. Indeed, EGF‐induced increase in phospho‐Cx43 level was significantly blocked by either AG 1478 or herbimycin A (tyrosine kinase inhibitors). EGF increased Ca2+ influx and protein kinase C (PKC) translocation from the cytosolic compartment to the membrane compartment. Moreover, pre‐treatment with BAPTA‐AM (an intracellular Ca2+ chelator), EGTA (an extracellular Ca2+ chelator), bisindolylmaleimide I or staurosporine (PKC inhibitors) inhibited the EGF‐induced phosphorylation of Cx43. EGF induced phosphorylation of p38 and p44/42 MAPKs, and this was blocked by SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a p44/42 MAPK inhibitor), respectively. EGF or 18α‐glycyrrhetinic acid (GA; a gap junction inhibitor) increased expression levels of the protooncogenes (c‐fos, c‐jun and c‐myc), cell cycle regulatory proteins [cyclin D1, cyclin E, cyclin‐dependent kinase 2 (CDK2), CDK4 and p‐Rb], [3H]thymidine incorporation and cell number, but decreased expression levels of the p21WAF1/Cip1 and p27Kip1, CDK inhibitory proteins. Transfection of Cx43 siRNA also increased the level of [3H]thymidine incorporation and cell number. EGF, 18α‐GA or transfection of Cx43 siRNA increased 2‐DG uptake and GLUT‐1 protein expression. Conclusions: EGF‐induced phosphorylation of Cx43, which was mediated by the Ca2+/PKC, p44/42 and p38 MAPKs pathways, partially contributed to regulation of mouse embryonic stem cell proliferation. 相似文献
9.
Wang C Xu H Chen H Li J Zhang B Tang C Ghishan FK 《American journal of physiology. Cell physiology》2011,300(2):C375-C382
Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na(+) absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na(+)/H(+) exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na(+) absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na(+) absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway. 相似文献
10.
Awasthi V King RJ 《American journal of physiology. Lung cellular and molecular physiology》2000,279(5):L942-L949
In this paper, we studied the signaling pathway used by hepatocyte growth factor/scatter factor (HGF) to stimulate mitosis. We show, using H441 cells, that 1) HGF activates membrane-associated protein kinase C (PKC); the activity is transient and peaks within 30 min; 2) HGF activates p42/p44 and p38 mitogen-activated protein kinases (MAPKs); maximum activity in both is within 10 min; and 3) the activation of neither p38 nor p42/p44 MAPK is dependent on PKC, indicating that HGF uses separate and nonintersecting pathways to activate these two classes of kinase. However, phorbol 12-myristate 13-acetate also activates both MAPKs as well as PKC, but this activation is abolished in cells pretreated with the PKC inhibitor GF-109203X. HGF was found to significantly increase [(3)H]thymidine incorporation within 5 h; peak thymidine incorporation was observed at 16 h. However, when cells were pretreated with inhibitors of p42/p44 (PD-98059), p38 (SB-203580), or PKC (GF-109203X, G?-6983, or myristoylated inhibitor peptide(19-27)), HGF-induced thymidine uptake was diminished in a dose-dependent manner. Taken together, these results demonstrate that HGF activates PKC and both MAPKs simultaneously through parallel pathways and that the activation of the MAPKs does not depend on PKC. However, p38 and p42/p44 MAPKs and PKC may all be essential for HGF-induced proliferation of H441 cells. 相似文献
11.
12.
Mariana G. Todorova Esther Fuentes Bernat Soria Angel Nadal Ivan Quesada 《Cellular signalling》2009,21(4):523-528
Embryonic stem cells (ESC) are pluripotent and could be maintained in vitro in a self-renewing state indefinitely, at the same time preserving their potential to differentiate towards more specific lineages. Despite the progress in the field, the complex network of signalling cascades involved in the maintenance of the self-renewing and pluripotent state remains not fully understood. In the present study, we have investigated the role of lysophosphatidic acid (LPA), a potent mitogen present in serum, in Ca2+ signalling and early gene activation in mouse ESC (mESC). In these cells, we detected the expression of the G-protein coupled LPA receptor subtypes LPA1, LPA2 and LPA3. Using fluorescence Ca2+ imaging techniques, we showed that LPA induced an increase in intracellular Ca2+ concentration. This increase was also observed in the absence of extracellular Ca2+, suggesting the involvement of internal stores. Pre-treatment with BAPTA-AM, thapsigargin or U-73122 efficiently blocked this Ca2+ release, indicating that LPA was evoking Ca2+ mobilization from the endoplasmic reticulum via the phospholipase C (PLC) pathway. Interestingly, this signalling cascade initiated by LPA was involved in inducing the expression of the Ca2+-dependent early response gene c-myc, a key gene implicated in ESC self-renewal and pluripotency. Additionally, LPA increased the proliferation rate of mESC. Our findings therefore outline the physiological role of LPA in mESC. 相似文献
13.
Angiotensin II elicits cytosolic and mitochondrial Ca2+ signal in H295R adrenocortical cells. We found that Ca2+ uptake rate and peak values in small mitochondrial regions both depend on the colocalization of these mitochondrial regions with GFP-marked endoplasmic reticular (ER) vesicles. The dependence of the Ca2+ response on this colocalization is abolished by SB202190 and PD169316, inhibitors of p38 MAPK, as well as by transfection with siRNA against p38 MAPK mRNA. The same manoeuvres result in an increased ratio of global mitochondrial to global cytosolic Ca2+ response, indicating that inhibition of p38 MAPK is followed by enhanced mitochondrial Ca2+ uptake. alpha-Toxin and TNFalpha, agents which similarly to angiotensin II increase the phosphorylation of p38, failed to affect mitochondrial Ca2+ uptake, indicating that activation of p38 MAPK is necessary but not sufficient for the inhibition of Ca2+ uptake. Bisindolylmaleimide, an inhibitor of the conventional and novel-type protein kinase C isoforms also evokes enhanced mitochondrial Ca2+ uptake, whereas G?6976 that inhibits the conventional isoforms only failed to exert any effect. These data show that angiotensin II attenuates Ca2+ uptake predominantly into mitochondria that do not colocalize with ER, by a mechanism involving p38 MAPK and a novel-type PKC. 相似文献
14.
Cui-Li Zhang Fei Song Q.H. Song 《Biochemical and biophysical research communications》2010,394(4):976-2974
Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs’ proliferation and migration. Over-expression of Bcl-2 increased HAECs’ tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation.Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway. 相似文献
15.
This study investigated the signal molecules linking the alteration in 2-dexoyglucose (2-DG) uptake and DNA synthesis in mouse embryonic stem (ES) cells under hypoxia. Hypoxia increased the 2-DG uptake and GLUT-1 protein expression level while the undifferentiated state of ES cells and cell viability were not affected by the hypoxia (1 - 48h). Subsequently, [(3)H] thymidine incorporation was significantly increased at 12 hours of hypoxic exposure. Hypoxia increased the Ca(2+) uptake and PKC beta (I), epsilon, and zeta translocation from the cytosol to the membrane fraction. Moreover, hypoxia increased the level of p44/42 mitogen-activated protein kinases (MAPKs) phosphorylation and hypoxia inducible factor-1alpha (HIF-1alpha) in a time-dependent manner. On the other hand, inhibition of these pathways blocked the hypoxia-induced increase in the 2-DG uptake and GLUT-1 protein expression level. Under hypoxia, cell cycle regulatory protein expression [cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4] were increased in a time-dependent manner, which were blocked by PD 98059. pRB protein was also increased in a time-dependent manner. In conclusion, under hypoxia, there might be a parallel relationship between the expression of GLUT1 and DNA synthesis, which is mediated by the Ca(2+) /PKC, MAPK, and the HIF-1alpha signal pathways in mouse ES cells. 相似文献
16.
Ji Hae Kim Ji Man Park Eung‐Kyun Kim Jung Ok Lee Soo Kyung Lee Jin Hee Jung Ga Young You Sun Hwa Park Pann‐Ghill Suh Hyeon Soo Kim 《Journal of cellular physiology》2010,223(3):771-778
Curcumin has been shown to exert a variety of beneficial human health effects. However, mechanisms by which curcumin acts are poorly understood. In this study, we report that curcumin activated AMP‐activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. In addition, curcumin activated the mitogen‐activated protein kinase kinase (MEK)3/6‐p38 mitogen‐activated protein kinase (MAPK) signaling pathways in the downstream of the AMPK cascade. Moreover, inhibition of either AMPK or p38 MAPK resulted in blockage of curcumin‐induced glucose uptake. Furthermore, the administration of curcumin to mice increased AMPK phosphorylation in the skeletal muscles. Taken together, these results indicate that the beneficial health effect of curcumin can be explained by its ability to activate AMPK‐p38 MAPK pathways in skeletal muscles. J. Cell. Physiol. 223:771–778, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
17.
Thrombin stimulates dissociation and induction of HSP27 via p38 MAPK in vascular smooth muscle cells
Hirade K Kozawa O Tanabe K Niwa M Matsuno H Oiso Y Akamatsu S Ito H Kato K Katagiri Y Uematsu T 《American journal of physiology. Heart and circulatory physiology》2002,283(3):H941-H948
We investigated the effects of thrombin on the induction of heat shock proteins (HSP) 70 and 27, and the mechanism behind the induction in aortic smooth muscle A10 cells. Thrombin increased the level of HSP27 but had little effect on the level of HSP70. Thrombin stimulated the accumulation of HSP27 dose dependently between 0.01 and 1 U/ml and cycloheximide reduced the accumulation. Thrombin stimulated an increase in the level of HSP27 mRNA and actinomycin D suppressed the thrombin-increased mRNA level. Thrombin induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The HSP27 accumulation by thrombin was reduced by SB-203580 and PD-169316 but not by SB-202474. SB-203580 and PD-169316 suppressed the thrombin-induced phosphorylation of p38 MAPK. SB-203580 reduced the thrombin-increased level of HSP27 mRNA. Dissociation of the aggregated HSP27 to the dissociated HSP27 was induced by thrombin. Dissociation was inhibited by SB-203580. Thrombin induced the phosphorylation of HSP27 and the phosphorylation was suppressed by SB-203580. These results indicate that thrombin stimulates not only the dissociation of HSP27 but also the induction of HSP27 via p38 MAPK activation in aortic smooth muscle cells. 相似文献
18.
It is now suggested that all components of the renin-angiotensin system are present in many tissues, including the embryo and may play a major role in embryo development and differentiation. However, little is known regarding whether ANG II regulates glucose transport in mouse embryonic stem (ES) cells. Thus, the effects of ANG II on [3H]-2-deoxyglucose (2-DG) uptake and its related signal pathways were examined in mouse ES cells. ANG II significantly increased cell proliferation and 2-DG uptake in concentration- and time-dependent manner (>18 h, >10(-8) M) and increased mRNA and protein level of GLUT1 by 31+/-7% and 22+/-5% compared to control, respectively. Actinomycin D and cycloheximide completely blocked the effect of ANG II on 2-DG uptake. ANG II-induced increase of 2-DG uptake was blocked by losartan, an ANG II type 1 (AT1) receptor blocker, but not by PD 123319, an ANG II type 2 (AT2) receptor blocker. In addition, ANG II-induced stimulation of 2-DG uptake was attenuated by phospholipase C (PLC) inhibitors, neomycin and U 73122 and ANG II increased inositol phosphates (IPs) formation by 37+/-8% of control. Protein kinase C (PKC) inhibitors, staurosporine, bisindolylmaleimide I, and H-7 also blocked ANG II-induced stimulation of 2-DG uptake. Indeed, ANG II activated a PKC translocation from the cytosolic to membrane fraction, suggesting a role of PKC. A 23187 (Ca2+ ionophore) increased 2-DG uptake and nifedifine (L-type Ca2+ channel blocker) blocked it. In conclusion, ANG II increased 2-DG uptake by PKC activation via AT1 receptor in mouse ES cells. 相似文献
19.
Lim MJ Seo YH Choi KJ Cho CH Kim BS Kim YH Lee J Lee H Jung CY Ha J Kang I Kim SS 《Archives of biochemistry and biophysics》2007,465(1):197-208
Role of c-Src in muscle differentiation has been controversial. Here, we investigated if c-Src positively or negatively regulates muscle differentiation, using H9c2 and C2C12 cell lines. Inhibition of c-Src by treatment with PP1 and SU6656, pharmacologic inhibitors of Src family kinases, or by expression of a dominant negative c-Src, all induced muscle differentiation in proliferation medium (PM). In differentiating cells in differentiation medium (DM), c-Src activity gradually decreased and reached basal level 3 days after induction of differentiation. Inhibition of c-Src suppressed Raf/MEK/ERK pathway but activated p38 MAPK. Inhibition of p38 MAPK did not affect c-Src activity in PM. However, it reactivated Raf/MEK/ERK pathway in c-Src-inhibited cells regardless of PM or DM. Concomitant inhibition of c-Src and p38 MAPK activities blocked muscle differentiation in both media. In conclusion, suppression of c-Src activity stimulates muscle differentiation by activating p38 MAPK uni-directionally. 相似文献
20.
Soon-Hee Kim Jin-Taek Hwang Hee Sook Park Dae Young Kwon Myung-Sunny Kim 《Biochemical and biophysical research communications》2013
Capsaicin has been reported to regulate blood glucose levels and to ameliorate insulin resistance in obese mice. This study demonstrates that capsaicin increases glucose uptake directly by activating AMP-activated protein kinase (AMPK) in C2C12 muscle cells, which manifested as an attenuation of glucose uptake when compound C, an AMPK inhibitor, was co-administered with capsaicin. However, the insulin signaling molecules insulin receptor substrate-1 (IRS-1) and Akt were not affected by capsaicin. Additional results showed that p38 mitogen-activated protein kinase (MAPK) is also involved in capsaicin-induced glucose transport downstream of AMPK because capsaicin increased p38 MAPK phosphorylation significantly and its specific inhibitor SB203580 inhibited capsaicin-mediated glucose uptake. Treatment with an AMPK inhibitor reduced p38 MAPK phosphorylation, but the p38 MAPK inhibitor had no effect on AMPK. Capsaicin stimulated ROS generation in C2C12 muscle cells, and when ROS were captured using the nonspecific antioxidant NAC, the increase in both capsaicin-induced AMPK phosphorylation and capsaicin-induced glucose uptake was attenuated, suggesting that ROS function as an upstream activator of AMPK. Taken together, these results suggest that capsaicin, independent of insulin, increases glucose uptake via ROS generation and consequent AMPK and p38 MAPK activations. 相似文献