首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The paper reports the measurement of biomass concentration using a laser turbidity probe. A suspension of Bakers’ yeast (0.5?50?gl-1) was subjected to various conditions of agitation and aeration in a stirred tank reactor and the turbidity measured using the probe. Both agitation and aeration were found to influence the turbidity. At any constant biomass concentration, the effect on the turbidity measurement of changing agitation or aeration rate independently was linear, while at any constant conditions of agitation and aeration rate, the relationship between turbidity and biomass concentration was non-linear. The results indicate that, in a bioprocess with non-particulate medium, it is possible to correct for the effects of aeration and agitation on turbidity measurement using a multivariate calibration model. A procedure for calibration and correction of measurements for the effects of agitation and aeration is presented and is verified using experimental data. This procedure may be generalised for other applications.  相似文献   

2.
The performance of an activated sludge wastewater treatment process consisting of an aeration tank and a secondary settler has been studied. A tanks-in-series model with backflow was used for mathematical modeling of the activated sludge wastewater treatment process. Non-linear algebraic equations obtained from the material balances of MLSS (mixed liquor suspended solids or activated sludge), BOD (biological oxygen demand) and DO (dissolved oxygen) for the aeration tank and the settler and from the behavior of the settler were solved simultaneously using the modified Newton-Raphson technique. The concentration profiles of MLSS, BOD and DO in the aeration tank were obtained. The simulation results were examined from the viewpoints of mixing in the aeration tank and flow in the secondary settling tank. The relationships between the overall performance of the activated sludge process and the operating and design parameters such as hydraulic residence time, influent BOD, recycle ratio and waste sludge ratio were obtained.  相似文献   

3.
In this work, fermentation and formulation aspects of the nematophagous fungus Hirsutella rhossiliensis BBA were investigated. When incubated in 2% (w/w) glucose and 0.5% (w/w) yeast extract medium in a 1-L Erlenmeyer flask without baffles, heavy pellet formation was observed. Only 40% of the mycelium had a size less than 500 μm. When a flask with three baffles was used, the portion of mycelium <500 μm rose to 95%. In the next step, the influence of aeration rate and stirrer speed on production of finely dispersed mycelium in a stirred tank reactor was investigated. The best fermentation results were obtained at 0.4 vvm and 400 rpm stirrer speed with 90% mycelium <500 μm and 5 g/L biomass. Then, mycelium was microencapsulated in hollow beads based on sulfoethylcellulose (SEC). Experiments on the capsule nutrient reservoir showed that 15% (w/w) corn gluten and 0.5% (w/w) yeast extract could be replaced with 3% (w/w) autoclaved baker's yeast which was never used as capsule additive before. Radial growth of mycelium out of dried hollow beads containing 1% (w/w) biomass and 3% (w/w) baker's yeast was faster than for alginate beads containing equivalent amounts of biomass and yeast indicating a higher bio-control potential.  相似文献   

4.
为获得甘草细胞在反应器中放大培养的最佳条件,在建立稳定的甘草细胞搅拌式生物反应器放大培养体系的基础上,分别以单因素和正交实验获得的数据为样本,以细胞净增长生物量为考察指标,运用BP神经网络耦合遗传算法对反应器操作策略进行优化。结果表明,接种量6.4%、摇床转速89r/min、通气速率0.1vvm是甘草细胞进行反应器培养的最优条件;与传统的正交实验方法相比,这种基于神经网络耦合遗传算法的优化方法使反应器中细胞生物量的积累提高了6.9%。  相似文献   

5.
为解决铁离子污染导致水体发黄问题,采用水培试验,分析了水禾、粉绿狐尾藻、圆币草、黄花水龙、大薸和圆叶节节菜等6种水生植物对铁离子污染水体的修复能力,研究了铁离子浓度、pH和植物生物量对水禾修复效果的影响,并探讨了曝气对水禾除铁的强化作用。结果表明: 6种水生植物均不同程度地促进了水中二价铁和全铁的去除,不同植物对铁的去除效果差异显著;试验24 h,水禾和圆币草处理二价铁浓度分别由5.0 mg·L-1降至0.23和0.26 mg·L-1,满足《地表水环境质量标准》(GB 3838—2002)限值要求(二价铁浓度≤0.3 mg·L-1),全铁浓度降至0.84和1.21 mg·L-1,去除率达83.2%和75.8%。pH在5、6、7、8时,各pH处理组二价铁和全铁浓度无显著差异,二价铁和全铁去除率分别为95.4%~98.4%和92.2%~94.6%。二价铁初始浓度≤5.0 mg·L-1时,二价铁和全铁去除率随二价铁浓度增加而增大;高浓度二价铁(10.0 mg·L-1)对水禾生长有一定的抑制作用,试验期间全铁去除不稳定,试验结束时全铁去除率较对照仅提高7.0%,远低于其他浓度处理。生物量≥300 g时,处理24 h,二价铁浓度从5.0 mg·L-1降至0.3 mg·L-1以下,且各生物量处理去除效果差异不显著。间歇曝气和连续曝气均强化水禾对铁的去除,连续曝气更利于稳定去除全铁。  相似文献   

6.
A lowland brook-pond system polluted by organic waste was aerated by a new aeration method (Phallus process).The immature chironomids were investigated. Forty-two species or species groups were found.The changes in community composition, species richness, diversity, redundancy, abundance and biomass were studied in the light of the recovery after treatment. Before aeration started, chironomids were absent in the aeration basin. After 81/2 months of aeration a chironomid community characterized by low species richness (four species) and high redundancy was established. Prolonged aeration resulted in a further increase of the species diversity and during the last survey, after about 2 years of aeration, the chironomid species richness had increased to 18 species. Similar trends could be found for the downstream sampling stations. The longitudinal recovery pattern probably restored the original zonation of the chironomid species, resulting from an ecological gradient created by the linear change in physiography of the water body. Orthocladiinae dominated in the brook stretch, whereas Chironominae and to a lesser extent Tanypodinae dominated in the ponds.  相似文献   

7.
Salazar  Magdalena O. 《Hydrobiologia》1996,326(1):353-354
This paper describes experiments to grow a local and still unidentified species of Gracilaria in shrimp hatcheries in Ecuador. The experiments used outdoor tanks of 1 and 18 m3 capacity, with continuous aeration and water renewal every two and five days, respectively. The sea water (salinity 34 ppt) was enriched with Guillard's f/2 medium; light and temperature were monitored but not controlled. One kg of fresh seaweed, inoculated into each tank, produced a biomass of ca. 3 kg in a period of 35 days in the 1 m3 tank and 18 kg in 43 days in the 18 m3 tank. We therefore believe that it is technically feasible to use the large infrastructure of existing shrimp hatcheries in Ecuador to produce Gracilaria.  相似文献   

8.
Macrophytic marine red algae are a diverse source of bioactive natural compounds. "Microplantlet" suspension cultures established from red algae are potential platforms for biosynthesis of these compounds, provided suitable bioreactor configurations for mass culture can be identified. The stirred tank bioreactor offers high rates of gas-liquid mass transfer, which may facilitate the delivery of the CO(2) in the aeration gas to the phototrophic microplantlet suspension culture. Therefore, the effects of impeller speed and CO(2) delivery on the long-term production of microplantlet biomass of the model red alga Agardhiella subulata was studied within a stirred tank photobioreactor equipped with a paddle blade impeller (D(i)/D(T) = 0.5). Nutrient medium replacement was required for sustained biomass production, and the biomass yield coefficient based on nitrate consumption was 1.08 +/- 0.09 g dry biomass per mmol N consumed. Biomass production went through two exponential phases of growth, followed by a CO(2) delivery limited growth phase. The CO(2)-limited growth phase was observed only if the specific growth rate in the second exponential phase of growth was at least 0.03 day(-)(1), the CO(2) delivery rate was less than 0.258 mmol CO(2) L(-)(1) culture h(-)(1), and the plantlet density was at least 10 g fresh mass L(-)(1). Increasing the aeration gas CO(2) partial pressure from 0.00035 to 0.0072 atm decreased the cultivation pH from 8.8 to 7.8, prolonged the second exponential phase of growth by increasing the CO(2) delivery rate, and also increased the photosynthetic oxygen evolution rate. Impeller speeds ranging from 60 to 250 rpm, which generated average shear rates of 2-10 s(-)(1), did not have a significant effect on biomass production rate. However, microplantlets cultivated in a stirred tank bioreactor ultimately assumed compact spherical shape, presumably to minimize exposure to hydrodynamic stress.  相似文献   

9.
The effect of aeration on growth and production of extra- and intracellular lipids was studied in the yeast Rhodotorula glutinis. Oxygen concentration in the medium optimal for biomass formation did not favour the maximal lipid yield. Changes in the fatty acid composition of the both lipid types as a function of aeration are discussed.  相似文献   

10.
Silicone rubber hollow fiber was able to enrich the oxygen concentration in air by about 30%, and oxygen was transferred sufficiently from the membrane to water. When an aeration tank was filled with hollow fiber to up to 10% of its volume, the oxygen utilization rate, Rr, was about seven times as much as the value in the standard activated sludge method. It is suggested that there is some possibility of improving the efficiency of aerobic wastewater treatment by using this system.  相似文献   

11.
The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.  相似文献   

12.
Apiotrichum curvatum ATCC 20509 (formerly Candida curvata D), a lipid-accumulating yeast, was grown in banana juice. The optimum conditions for biomass production in shake flasks were 30°C growth temperature, efficient aeration, a juice concentration of 25%, and preliminary heat treatment at less than sterilization conditions. Under controlled conditions in a fermentor, 20% banana juice was optimum. High concentrations of yeast extract (0.3%) increased biomass production by 40% but decreased oil production by 30%. A lower yeast extract concentration (0.05%) increased biomass production by 2% and oil production by 25%. The best growth and oil production were observed when asparagine (1.4 g/liter) and mineral salts were added to the banana juice. The addition of minerals seemed to improve the utilization of carbon. Growth inhibition was observed when the fermentor was aerated with pure oxygen, even when additional nutrients were present. A fed-batch process permitted the juice concentration to be increased from 15 to 82%; biomass accumulation was three times higher than in batch fermentations. However, the cellular lipid content was only 30% of dry weight, and chemical oxygen demand reduction was slow and inefficient.  相似文献   

13.
Poor sludge settling was observed occasionally during the treatment of effluent from acrylonitrile and acrylates manufacturing plants using an extended aeration activated sludge process. Sludge settled excellently when suspended in water or a filtrate obtained by passing aeration tank supernatant through granular activated charcoal (GAC) column. A biofactor consisting of 52% lipid, 10% protein, and 11% carbohydrate was isolated from the supernatant obtained after removal of suspended solids from aeration tank wastewater. Addition of biofactor in water or GAC filtrate adversely affected the sludge settling.  相似文献   

14.
Activated sludge from a wastewater treatment plant consists of a consortium of microbes that utilize various organic molecules including persistent organic pollutants for their survival. Phenolic compounds and their derivatives along with dibenzofuran (DBF) are found as dominating pollutants in distillery waste. The acclimatization process leads to selective enrichment of the microbial community; and in this study, we report the acclimatizing effect of phenol on improving the treatment efficiency of two different distillery sludges—sludge from conventional aeration tanks (CAT), and from an extended aeration tank (EAT). The adaptation-dependent performance of activated biomass was studied by monitoring the increase in colony-forming units (CFUs) on mineral media and the utilization pattern for phenol (300×103 and 530×103 CFU for CAT and EAT sludge, respectively) and DBF (260×103 and 430×103 CFU for CAT and EAT sludge, respectively). The study showed that the acclimatization process remarkably improved the performance sludge for treatment of distillery wastewater. There was an improvement in chemical oxygen demand (COD) removal efficiency from 19% (unacclimatized sludge) to 31% in the case of acclimatized sludge (raw wastewater), which improved further to 82% and 87% with dilution of wastewater by 10 times (0.1×) and by 50 times (0.02×), respectively. Highest growth yields were observed with 0.1× wastewater (0.324 and 0.308 g g−1 d−1 for CAT and EAT sludges, respectively), while lower values are reported for the remaining two forms of wastewater. The study proposes that acclimatization step could be included as part of a treatment plant where the activated biomass could be intermittently metabolically charged by exposing it to selected molecules to increase treatment efficiency.  相似文献   

15.
Aspartate ammonia-lyase activity ofEscherichia alcalescens was positively affected by the composition of the culture medium and by a higher intensity of aeration. By using the supernatant obtained from autolyzed baker’s yeast, the aspartate ammonia-lyase activity increased two-fold (about 90 μkat/g wet biomass) as compared to commercial yeast autolyzates. The authors thank Mr. J. Tomíček (Food Industry Research Institute, Prague) for a sample of the yeast autolyzate of the Kolín type.  相似文献   

16.
This study was aimed at determining the degree of biomass homogeneity in the various parts of an internal loop airlift bioreactor, thus verifying the assumption, often made in bioreactor studies, of a well-mixed liquid-biomass system. Following characterization of the hydrodynamics of the vessel with water, the axial biomass distribution in the riser and downcomer was determined for plant and yeast cell suspensions of 5.8, 8.5, and 12.5 g DW/L Phaseolus vulgaris and of 30 and 46 g DW/L Saccharomyces cerevisiae. The airlift bioreactor with a surface ratio A(D)/A(D) of 1.04 and aspect ratio of 4.95 was investigated under various aeration rates. The yeast cells were found to be distributed practically uniformly throughout the vessel at the aeration rates of 0.1-1.45 vvm. However, in the case of the denser and cluster-forming plant cells, a clear trend of a gradual bio-mass accumulation in the downcomer, a slightly lower but uniform biomass loading in the riser, and a slightly higher biomass concentration in the gas-liquid separator was observed at the lower aeration rates of 0.1-0.61 vvm. In the case of powderized calcium carbonate (55g/L) often used in fermentations of organic acids, a slight trend of a gradual accumulation of solids towards the bottom parts in both the downcomer and riser was observed. A better representative sampling location, in terms of solids and biomass loading, seems to be in the middle part of the vessel. It is suggested that airlift bioreactors with higher aspect ratios (>5) may be prone to a more significant inhomogeneity of solids (biomass and particles).  相似文献   

17.
Thirteen yeast species belonging to nine genera were screened for the production of single-cell protein (SCP) using cheese whey as the substrate. Cheese whey supplemented with minerals and yeast extract proved to the best medium for yield, lactose utilization, biomass production, and conversion efficiency. Production of beta-galactosidase was studied in Brettanomyces anomalus, Kluyveromyces fragilis, Trichosporon cutaneum, and Wingea robertsii; the last proved to be the best strain combining high yield with shorter incubation period.  相似文献   

18.
A floc-forming bacterium, strain no. 5, which made very large and easily precipitated flocs, was added as seed sludge in a bench-scale aeration tank. About one week allowed for production of activated sludge which could treat high-BOD wastewater at high-BOD loading while maintaining very good settling characteristics. The strain no. 5 was present at 3% of the activated sludge. Moreover, the settling characteristics of the activated sludge were much improved when the strain no. 5 culture was added to the bench-scale aeration or a large-scale deep aeration tank.  相似文献   

19.
In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20‐L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1±0.4 g/L) and productivity of 0.09 g L?1 h?1 were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82±6 and 341.15±12.3 mg/g mycelium dry weight, respectively.  相似文献   

20.
Biological treatment systems for high strength wastewaters are usually operated in continuous mode such as activated sludge systems. When operated at steady-state, continuous systems result in constant effluent standards. However, in the presence of shock loadings and/or toxic compounds in feed wastewater, system performance drops quite significantly as a result of partial loss of microbial activity. In fed-batch operation, wastewater is fed to the aeration tank with a flow rate determined by effluent standards. In this type of operation, wastewater can be fed to biological oxidation unit intermittently or continuously with a low flow rate without any effluent removal. Feed flow rate is adjusted by measuring COD concentration in the effluent. As a result of intermittent addition of wastewater high COD concentrations and toxic compounds are diluted in large volume of aeration tank and inhibition effects of those compounds are reduced. As a result, biological oxidation of these compounds take place at a much higher rate. In order to show the aforementioned advantage of fed-batch operation, a high strength synthetic wastewater consisting of diluted molasses, urea, KH2PO4 and MgSO4 was treated in an biological aeration tank by fed-batch operation. Organisms used were an active and dominant culture of Zooglea ramigera commonly encountered in activated sludge operations. COD removal kinetics was found to be first order and the rate constant was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号