首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Post-translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co-localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non-histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.  相似文献   

2.
David Ribet 《FEBS letters》2010,584(13):2748-2758
Post-translational modification of proteins is a widespread mechanism used by both prokaryotic and eukaryotic cells to modify the activity of key factors that plays fundamental roles in cellular physiology. This review focuses on how bacterial pathogens can interfere with host post-translational modifications to promote their own survival and replication.  相似文献   

3.
4.
5.
Post-translational modifications of lantibiotics   总被引:2,自引:0,他引:2  
Several newly reported post-translational modification reactions are involved in lantibiotic biosynthesis. A short overview of the present knowledge on the post-translational modifications and on the enzymes involved in lantibiotic biosynthesis is given. The oxidative decarboxylation of the epidermin precursor peptide EpiA is described in detail. The FMN-containing oxidoreductase EpiD is involved in the formation of the C-terminal S-[(Z)-2-aminovinyl]-D-cysteine residue of epidermin: under reducing conditions the side chain of the C-terminal cysteine residue of EpiA is converted to an enethiol. EpiD has no absolute substrate specificity and can be used for modification of peptides having the C-terminal consensus motif [V/I/L/(M)/F/Y/W]-[A/S/V/T/C/(I/L)]-C.Abbreviations Dha 2,3-didehydroalanine - Dhb (Z)-2,3-didehydrobutyrine - ES-MS Electrospray Mass Spectrometry - FAD Flavin Adenine Dinucleotide - FMN Flavin Mononucleotide - MBP Maltose-Binding Protein - TFA TrifluoroAcetic Acid - TLC Thin-Layer Chromatography  相似文献   

6.
The lantibiotics are a rapidly expanding group of biologically active peptides produced by a variety of Gram-positive bacteria, and are so-called because of their content of the thioether amino acids lanthionine and β-methyllanthionine. These amino acids, and indeed a number of other unusual amino acids found in the lantibiotics, arise following post-translational modification of a ribosomally synthesised precursor peptide. A number of genes involved in the biosynthesis of these highly modified peptides have been identified, including genes encoding the precursor peptide, enzymes responsible for specific amino acid modifications, proteases able to remove the leader peptide, ABC-superfamily transport proteins involved in lantibiotic translocation, regulatory proteins controlling lantibiotic biosynthesis and proteins that protect the producing strain from the action of its own lantibiotic. Analysis of these genes and their products is allowing greater understanding of the complex mechanism(s) of the biosynthesis of these unique peptides.  相似文献   

7.
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.  相似文献   

8.
9.
10.
11.
Post-translational modifications of poliovirus proteins   总被引:2,自引:0,他引:2  
The post-translational modifications of poliovirus proteins have been investigated by analysis of glycosylation, sulphation, phosphorylation and acylation of the proteins made in the infected HeLa cells. No glycosylation or sulphation of proteins specific for virus-infected cells was apparent. A number of changes in the pattern of phosphorylated proteins took place. The specific myristylation of the structural protein VP4 and its precursors was clearly apparent. Acylation of viral proteins with oleic or palmitic acid was not detected. Myristylation took place in the presence of the protease inhibitor ZnCl2, but not in the presence of inhibitors of translation, such as cycloneximide and anysomycin.  相似文献   

12.
Post-translational modifications of proteins control many biological processes through the activation, inactivation, or gain-of-function of the proteins. Recent developments in mass spectrometry have enabled detailed structural analyses of covalent modifications of proteins and also have shed light on the post-translational modification of superoxide dismutase. In this review, we introduce some covalent modifications of superoxide dismutase, nitration, phosphorylation, glutathionylaion, and glycation. Nitration has been the most extensively analyzed modification both in vitro and in vivo. Reaction of human Cu,Zn superoxide dismutase (SOD) with reactive nitrogen species resulted in nitration of a single tryptophan residue to 6-nitrotryptophan, which could be a new biomarker of a formation of reactive nitrogen species. On the other hand, tyrosine 34 of human MnSOD was exclusively nitrated to 3-nitrotyrosine and almost completely inactivated by the reaction with peroxynitrite. The nitrated MnSOD has been found in many diseases caused by ischemia/reperfusion, inflammation, and others and may have a pivotal role in the pathology of the diseases. Most of the post-translational modifications have given rise to a reduced activity of SOD. Since phosphorylation and nitration of SOD have been shown to have a possible reversible process, these modifications may be related to a redox signaling process in cells. Finally we briefly introduce a metal insertion system of SOD, focusing particularly on the iron misincorporation of nSOD, as a part of post-translational modifications.  相似文献   

13.
14.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.  相似文献   

15.
Lysine-specific demethylase 1 (LSD1) is crucial for regulating gene expression by catalyzing the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4) and lysine 9 (H3K9) and non-histone proteins through the amine oxidase activity with FAD+ as a cofactor. It interacts with several protein partners, which potentially contributes to its diverse substrate specificity. Given its pivotal role in numerous physiological and pathological conditions, the function of LSD1 is closely regulated by diverse post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, and acetylation. In this review, we aim to provide a comprehensive understanding of the regulation and function of LSD1 following various PTMs. Specifically, we will focus on the impact of PTMs on LSD1 function in physiological and pathological contexts and discuss the potential therapeutic implications of targeting these modifications for the treatment of human diseases.  相似文献   

16.
Post-translational modifications in mitotic yeast cells   总被引:5,自引:0,他引:5  
We have recently shown that secretion of invertase is not inhibited in the yeast Saccharomyces cerevisiae during mitosis, but continues, as during interphase. This is in contrast with the mammalian cell, where membrane traffic stops at the onset of prometaphase. Here we extend our findings by showing that the bulk of the cell surface glycoproteins and mannans, as well as the yeast pheromone alpha-factor, traverse the secretory pathway during mitosis. We show that the mitotic cells are able to carry out several types of post-translational modification of secretory proteins. (a) The secretory protein invertase was oligomerized and extensively glycosylated, (b) the N-glycan cores of bulk-cell surface mannans were extended with outer chains, (c) some N-glycans were phosphorylated, (d) the protein-bound O-glycans were extended up to tetramannosides, (e) prepro-ka-factor was proteolytically processed to alpha-factor molecules. We conclude that the secretory pathway in yeast remains fully functional throughout the cell cycle.  相似文献   

17.
18.
Plant Cell, Tissue and Organ Culture (PCTOC) - Tree peony is a well-known ornamental plant that is also valued for its medical uses and edible oil production. A long breeding period and low...  相似文献   

19.
Amino Acids - Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号