首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic and mitochondrial isozymes of aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase [EC 2.6.1.1] ) were purified to homogeneity from rabbit liver. The rabbit liver isozymes were closely similar to the corresponding isozymes from other sources, including human heart, pig heart, chicken heart, and rat liver, in their molecular weights, absorption spectra, amino acid compositions, isoelectric points, and Michaelis constants for the substrates. The NH2-terminal amino acid sequences of rabbit liver isozymes were identified up to 30 residues, and showed some differences from those of the corresponding isozymes obtained from other animals so far studied.  相似文献   

2.
Five aspartate aminotransferase (EC 2.6.1.1; AAT) isozymes were identified in soybean seedling extracts and designated AAT1 to AAT5 based on their rate of migration on non-denaturing electrophoretic gels. AAT1 was detected only in extracts of cotyledons from dark-grown seedlings. AAT3 and AAT4 were detected in crude extracts of leaves and in cotyledons of seedlings grown in the light. AAT2 and AAT5 were detected in all tissues examined. A soybean leaf cDNA clone, pSAT17, was identified by hybridization to a carrot AAT cDNA clone at low stringency. pSAT17 had an open reading frame which could encode a 50 581 Da protein. Alignment of the deduced amino acid sequence from the pSAT17 open reading frame with mature AAT protein sequences from rat disclosed a 60 amino acid N-terminal extension in the pSAT17 protein. This extension had characteristics of a plastid transit peptide.A plasmid, pEXAT17, was constructed which encoded the mature protein lacking the putative chloroplast transit polypeptide. Transformed Escherichia coli expressed a functional soybean AAT isozyme, which comigrated with the soybean AAT5 isozyme during agarose gel electrophoresis. Differential sucrose gradient sedimentation of soybean extracts indicated that AAT5 specifically cofractionated with chloroplasts. Antibodies raised against the pEXAT17-encoded AAT protein specifically reacted with the AAT5 isozyme of soybean and not with any of the other isozymes, indicating that the soybean cDNA clone, pSAT17, encodes the chloroplast isozyme, AAT5.  相似文献   

3.
A soybean cDNA clone, pSAT1, which encodes both the cytosolic and glyoxysomal isozymes of aspartate aminotransferase (AAT; EC 2.6.1.1) was isolated. Genomic Southern blots and analysis of genomic clones indicated pSAT1 was encoded by a single copy gene. pSAT1 contained an open reading frame with ca. 90% amino acid identity to alfalfa and lupin cytosolic AAT and two in-frame start codons, designated ATG1 and ATG2. Alignment of this protein with other plant cytosolic AAT isozymes revealed a 37 amino acid N-terminal extension with characteristics of a peroxisomal targeting signal, designated PTS2, including the modified consensus sequence RL-X5-HF. The second start codon ATG2 aligned with previously reported start codons for plant cytosolic AAT cDNAs. Plasmids constructed to express the open reading frame initiated by each of the putative start codons produced proteins with AAT activity in Escherichia coli. Immune serum raised against the pSAT1-encoded protein reacted with three soybean AAT isozymes, AAT1 (glyoxysomal), AAT2 (cytosolic), and AAT3 (subcellular location unknown). We propose the glyoxysomal isozyme AAT1 is produced by translational initiation from ATG1 and the cytosolic isozyme AAT2 is produced by translational initiation from ATG2. N-terminal sequencing of purified AAT1 revealed complete identity with the pSAT1-encoded protein and was consistent with the processing of the PTS2. Analysis of cytosolic AAT genomic sequences from several other plant species revealed conservation of the two in-frame start codons and the PTS2 sequence, suggesting that these other species may utilize a single gene to generate both cytosolic and glyoxysomal or peroxisomal forms of AAT.  相似文献   

4.
Aspartate aminotransferase (AAT), an enzyme interconverting glutamate and aspartate, has been suggested to be a marker for glutamatergic and/or aspartatergic neurons. However, AAT, glutamate, and aspartate are also involved in cellular metabolism, e.g., the malate-aspartate shuttle. To investigate the extent to which AAT might be involved in these several functions in retina, the distribution of AAT activity in rat retinal layers was compared to that of malate dehydrogenase (MDH), an enzyme of aerobic metabolism proposed to be physically complexed with AAT in the malate-aspartate shuttle mechanism. The distribution of AAT activity in retinal layers closely paralleled that of MDH (correlation coefficient AAT versus MDH = 0.93). AAT activity was proportionately higher than MDH in the photoreceptor inner segments, containing a high density of mitochondria, and in the outer plexiform layer (OPL), containing photoreceptor terminals and bipolar and horizontal cell processes. The amount of total AAT activity in the inner segments related to the mitochondrial isoenzyme is almost twice that in the other layers tested, including the OPL. The correlation between AAT and MDH activities is consistent with AAT involvement in retinal energy metabolism, although other functions, such as neurotransmission, are possible.  相似文献   

5.
The plant aspartate aminotransferase gene family   总被引:4,自引:0,他引:4  
  相似文献   

6.
Intracellular distribution of aspartate aminotransferase (AAT) in Spirodela polyrhiza (Lemnaceae), strain SJ, has been studied by differential centrifugation. The bulk of the enzyme (73% of total cellular content) was localized in the cytoplasm and 24% activity was localized in chloroplasts. Purified cytoplasmic and chloroplastic isozymes differed by their affinity for substrates. The reaction balance was shifted towards direct and reverse transamination in the cytoplasm and chloroplast, respectively. Competitive inhibition of AAT by excessive substrates and enzyme affinity modulation by certain intermediates of the tricarboxylic acid cycle (isocitrate, succinate, and citrate) were observed. Possible involvement of AAT isozymes in the coordination of carbon and nitrogen metabolism through the regulation of 2-oxoglutarate synthesis and utilization in different cellular compartments is discussed.  相似文献   

7.
A soybean leaf cDNA clone, pSAT2, was isolated by hybridization to a carrot aspartate aminotransferase (EC 2.6.1.1.; AAT) cDNA clone at low stringency. pSAT2 contained an open reading frame encoding a 47640 Da protein. The protein encoded by pSAT2 showed significant sequence similarity to AAT proteins from both plants and animals. It was most similar to two Panicum mitochondrial AATs, 81.5% and 82.0% identity. Alignment of the pSAT2-encoded protein with other mature AAT enzymes revealed a 25 amino acid N-terminal extension with characteristics of a mitochondrial transit peptide. A plasmid, pEXAT2, was constructed to encode the mature pSAT2 protein lacking the putative mitochondrial transit peptide. Escherichia coli containing the plasmid expressed a functional AAT isozyme which comigrated with the soybean AAT4 isozyme during agarose gel electrophoresis. Equilibrium sucrose gradient sedimentation of soybean extracts demonstrated that AAT4 specifically cofractionated with mitochondria. Antibodies raised against the pEXAT2-encoded AAT protein reacted with AAT4 of soybean and not with other AAT isozymes detected in soybean tissues, providing further evidence that clone pSAT2 encodes the soybean mitochondrial isozyme AAT4.  相似文献   

8.
The transaminase inhibitor l-2-amino-4-methoxy-trans-3-butenoic acid (AMB) decreased aspartate aminotransferase activity by approximately two-thirds in isolated rat liver mitohondria incubated with succinate, ammonia, and ornithine. Aspartate production by the mitochondria was unaffected over the 30-min incubation period, indicating that mitochondrial aspartate aminotransferase activity is normally far in excess of that required for maximal rates of aspartate production. In rat hepatocytes incubated with lactate, ammonia, and ornithine the inhibition of both the cytosolic and mitochondrial isozymes of aspartate aminotransferase by AMB was partially blocked by the presence of ammonia and ornithine. When pyruvate was substituted for lactate as a carbon source with isolated hepatocytes, the presence of ammonia and ornithine blocked the inhibition by AMB of the mitochondrial but not the cytosolic isozyme of aspartate aminotransferase. Urea formation by cells incubated with lactate, ammonia, and ornithine was unaffected by AMB unless the cells were preincubated with the inhibitor prior to the addition of substrates. However, urea formation by cells incubated in the presence of pyruvate, ammonia, and ornithine was inhibited strongly by AMB even without preincubation. The results suggest that the stimulation of ureogenesis from ammonia and ornithine by pyruvate involves the cytosolic isozyme of aspartate aminotransferase. In contrast, the stimulation of ureogenesis elicited by lactate primarily involved mitochondrial aspartate aminotransferase.  相似文献   

9.
Genomic clones encoding two isozymes of aspartate aminotransferase (AAT) were isolated from an alfalfa genomic library and their DNA sequences were determined. The AAT1 gene contains 12 exons that encode a cytosolic protein expressed at similar levels in roots, stems and nodules. In nodules, the amount of AAT1 mRNA was similar at all stages of development, and was slightly reduced in nodules incapable of fixing nitrogen. The AAT1 mRNA is polyadenylated at multiple sites differing by more than 250 bp. The AAT2 gene contains 11 exons, with 5 introns located in positions identical to those found in animal AAT genes, and encodes a plastid-localized isozyme. The AAT2 mRNA is polyadenylated at a very limited range of sites. The transit peptide of AAT2 is encoded by the first two and part of the third exon. AAT2 mRNA is much more abundant in nodules than in other organs, and increases dramatically during the course of nodule development. Unlike AAT1, expression of AAT2 is significantly reduced in nodules incapable of fixing nitrogen. Phylogenetic analysis of deduced AAT proteins revealed 4 separate but related groups of AAT proteins; the animal cytosolic AATs, the plant cytosolic AATs, the plant plastid AATs, and the mitochondrial AATs.  相似文献   

10.
C Jayashree 《Life sciences》1975,17(7):1159-1165
The activity levels of Aspartate aminotransferase (AAT) and Alanine aminotransferase (A1AT) in the cerebrum, Cerebellum, optic lobes and medulla oblongata of normal and alloxan-diabetic rats were determined. The Heterogeneity of aminotransferases in the cerebral and cerebellar regions of normal and alloxan-diabetic rats was studied via agar gel electrophoresis. In general, the activities of the two aminotransferases increased in the brain of alloxan-diabetic rats. Cerebral and cerebellar distribution, sub-unit pattern and relative electrophoretic mobility of the isozymes of AAT and A1AT of normal and diabetic rats are described.  相似文献   

11.
While sulfur dioxide (SO2) has been previously known for its toxicological effects, it is now known to be produced endogenously in mammals from sulfur-containing amino acid l-cysteine. l-cysteine is catalyzed by cysteine dioxygenase (CDO) to l-cysteinesulfinate, which converts to β-sulfinylpyruvate through transamination by aspartate aminotransferase (AAT), and finally spontaneously decomposes to pyruvate and SO2. The present study explored endogenous SO2 production, and AAT and CDO distribution in different rat tissue. SO2 content was highest in stomach, followed by tissues in the right ventricle, left ventricle, cerebral gray matter, pancreas, lung, cerebral white matter, renal medulla, spleen, renal cortex and liver. AAT activity and AAT1 mRNA expression were highest in the left ventricle, while AAT1 protein expression was highest in the right ventricle. AAT2 and CDO mRNA expressions were both highest in liver tissue. AAT2 protein expression was highest in the renal medulla, but CDO protein expression was highest in liver tissue. In all tissues, AAT1 and AAT2 were mainly distributed in the cytoplasm rather than the nucleus. These observed differences among tissues endogenously generating SO2 and associated enzymes are important in implicating the discovery of SO2 as a novel endogenous signaling molecule.  相似文献   

12.
The initial appearance of a number of enzymes involved in gluconeogenesis was investigated in the early embryogenesis of the Japanese quail (Coturnix coturnix japonica), the domestic chicken (Gallus gallus domesticus), and chicken-quail hybrids. Starch gel electrophoresis and enzyme-specific stains revealed genetic differences between muscle and liver fructose 1,6-diphosphatase (FDPase) as well as malic enzyme (ME) and mitochondrial aspartate aminotransferase (AAT) isozymes of the two species. ME and AAT were present in unfertilized unincubated eggs, indicating maternal storage of these enzymes. The initial expression of the paternally inherited genes in the hybrid occurred before oviposition in the case of ME, and between 12 and 18 hr incubation in the case of AAT. Initial expression of both parental sets of genes for FDPase occurred synchronously between 16 and 24 hr in the hybrid, corresponding to the time of initial appearance of this enzyme in the quail and chicken. Glucose 6-phosphate administration at 0 hr was found to cause no prevention or delay of initial enzyme activation. These results are interpreted in terms of early patterns of enzyme activation regulation and nutrition in the avian embryo.  相似文献   

13.
The effect of experimental cardiac hypertrophy on the enzymes of the malate - aspartate shuttle aspartate aminotransferase (AAT) and malate dehydrogenase (MDH) was studied. ( l ) Aortic constriction in adult rats resulted in 25% cardiac hypertrophy in 2 1/2-3 weeks. Total DNA (mg per heart) did not change. ( 2 ) The proportions of mitochondrial and cytosolic isozymes of AAT and MDH did not change as a result of cardiac h y p e r t r o p h y . About two-thirds of each enzyme occurred in the mitochondrial form and one-third in the cytosolic form. ( 3 ) Total AAT in hypertrophic hearts, in enzyme units per mg DNA, increased by 24% compared to AAT content in the hearts of sham-operated animals . Total MDH did not change. SoIubilized protein increased by 20%. Normal hearts contained 10 times more enzyme units of MDH than of AAT. (4) Cardiac growth stimulation induced in newborn rats did not result in specific changes of either enzyme. It is suggested that true cardiac hypertrophy acts as a specific stimulus for the possibly rate-limiting enzyme AAT of the shuttle.  相似文献   

14.
The effects of testosterone on mitochondrial aspartate aminotransferase (mAAT) synthesis in rat ventral prostate was investigated. Procedures for the isolation, purification and characterization of AAT isozymes were developed and described. Purified mAAT preparations contained no demonstrable contaminating proteins. Prostatic mAAT was characterized as a cationic protein with an estimated mol. wt of 120,000. Cytoplasmic AAT (cAAT) isozyme was identified as an anionic protein with an estimated mol. wt of 132,000. A cytosolic cationic isozyme, similar to mAAT, was also identified as pre-mAAT. Testosterone administration to castrated rats resulted in significant increases in leucine incorporation into mAAT, in the level of mAAT, and in mAAT activity. These effects of testosterone were observed within 2 h of administration. Conversely, testosterone administration had none of these effects on cAAT or on non-AAT protein pool. Testosterone treatment did appear to increase leucine incorporation into pre-mAAT. Testosterone treatment in organ cultures and in prostate epithelial cell cultures resulted in the same stimulatory effects on mAAT as observed in the in vivo studies. The hormone was effective at the physiological concentration of 2 X 10(-9) M. These results indicated that testosterone has a rapid and specific effect on the biosynthesis of mAAT. This continues to support our proposal that testosterone regulates prostate citrate production via a stimulatory effect on mAAT which results in increased mitochondrial synthesis of citrate from aspartate.  相似文献   

15.
Enzyme polymorphism in Adenophora potaninii Korsh. was investigated using vertical slab polyacrylamide gel electrophoresis. Genetic analysis of the population samples and the progeny of intraspecific crosses allowed the verification of the isozyme loci from eight enzyme systems. The system studies included aspartate aminotransferase (AAT), esterase (EST). formate dehydrogenase (FDH), glutamate dehydrogenase (GDH), isocitrate dehydrogenase (IDH), lactate dehydrogenase (LDH), malic enzyme (ME) and superoxide dismutase (SOD). The results indicated that the eight enzyme systems are specified by at least 18 loci, 12 of which behaved as al|ozyme loci. Zymogram patterns showed that EST is monomeric and GDH is hexameric. AAT, FDH, IDH and SOD are apparently dimeric. The tissue and developmental variability are also discussed along with the genetic analysis of isozymes.  相似文献   

16.
泡沙参同工酶基因位点的遗传分析   总被引:8,自引:0,他引:8  
利用聚丙烯酰胺凝胶电泳技术 ,对来自天然群体 (居群 )的泡沙参 (Adenophora potaninii Korsh.)及其人工杂交子代进行了 8种同工酶的电泳检测和谱带遗传分析 ,以确定编码这些酶系统的基因位点和等位基因。选用 4种不同的凝胶缓冲系统 ,对下列不同酶系统进行了酶谱的遗传分析 :天冬氨酸转氨酶 (AAT)、酯酶 (EST)、甲酸脱氢酶 (FDH)、谷氨酸脱氢酶 (GDH)、异柠檬酸脱氢酶 (IDH)、乳酸脱氢酶(LDH)、苹果酸酶 (ME)和超氧化物歧化酶 (SOD)。结果表明 ,这 8种酶系统至少由 1 8个基因位点编码 ,其中 1 2个位点为遗传稳定的等位酶位点 ,是可靠的遗传标记。酶谱的分离式样表明 ,EST为单聚体结构 ,AAT、FDH、IDH、SOD为二聚体结构 ,GDH为六聚体结构。最后对同工酶的器官和发育特异性以及同工酶基因位点的遗传分析进行了讨论  相似文献   

17.
The aldehyde dehydrogenase (Aldehyde:NAD(P) oxidoreductase E.C. 1.2.1.3. and 1.2.1.5) phenotype in several tissues of the Mongolian gerbil, Meriones unguiculatus, has been established. The tissue distribution of gerbil aldehyde dehydrogenase is similar to that of the rat, with liver possessing the majority of the aldehyde dehydrognease activity. Male kidney and testis possess significantly more activity than female kidney and ovary. The substrate and co-enzyme specificity of gerbil liver aldehyde dehydrogenase is also similar to that of rat and mouse liver. Gel isoelectric focusing resolves one major gerbil liver aldehyde dehydrogenase isozyme at pI 5.3. Mouse liver is resolved into two major isozymes at pIs 5.3 and 5.6 and rat liver aldehyde dehydrogenase into one major isozyme at pI 5.4. Gerbil liver aldehyde dehydrogenase is functional over a broad pH range with an optima at pH 9.0. Rat and mouse liver aldehyde dehydrogenase possess sharp pH optima at pH 8.5.  相似文献   

18.
The streptozotocin diabetic rat was selected as a model to study how insulin deficiency alters vitamin B6 utilization by focusing on pyridoxal phosphate levels and aspartate aminotransferase activities in liver tissues. Diabetes of 15 weeks' duration lowered plasma pyridoxal phosphate levels by 84%. Normal plasma pyridoxal phosphate was 480 pmole/ml. Fractionation of liver into mitochondrial and extramitochondrial compartments demonstrated that diabetes caused a 43% diminution in mitochondrial pyridoxal phosphate per gram of liver. There was no cytoplasmic change in these diabetic rats. Mitochondrial aspartate aminotransferase activity was decreased 53% per gram of diabetic liver and cytoplasmic aspartate aminotransferase activity was elevated 3.4-fold. Damage to diabetic mitochondria during preparation procedures could not account for the rise in cytoplasmic aspartate aminotransferase activity. Electrophoresis showed that in the diabetic cytoplasm both cathodal and anodal forms of the enzyme were elevated. Speculations concerning mitochondrial loss and cytoplasmic gain of enzyme activity as well as those on the reduction of plasma pyridoxal phosphate in the diabetic rat are presented.  相似文献   

19.
1. Butan-1-ol solubilizes that portion of rat liver mitochondrial aspartate aminotransferase (EC 2.6.1.1) that cannot be solubilized by ultrasonics and other treatments. 2. A difference in electrophoretic mobilities, chromatographic behaviour and solubility characteristics between the enzymes solubilized by ultrasonic treatment and by butan-1-ol was observed, suggesting the occurrence of two forms of this enzyme in rat liver mitochondria. 3. Half the aspartate aminotransferase activity of rat kidney homogenate was present in a high-speed supernatant fraction, the remainder being in the mitochondria. 4. A considerable increase in aspartate aminotransferase activity was observed when kidney mitochondrial suspensions were treated with ultrasonics or detergents. 5. All the activity after maximum activation was recoverable in the supernatant after centrifugation at 105000g for 1hr. 6. The electrophoretic mobility of the kidney mitochondrial enzyme was cathodic and that of the supernatant enzyme anodic. 7. Cortisone administration increased the activities of both mitochondrial and supernatant aspartate aminotransferases of liver, but only that of the supernatant enzyme of kidney.  相似文献   

20.
Summary The enzyme aspartate aminotransferase (AAT) plays a key role in the assimilation of fixed-N in alfalfa (Medicago sativa L.) root nodules. AAT activity in alfalfa nodules is due to the activity of two dimeric isozymes, AAT-1 and AAT-2, that are products of two distinct genes. Three forms of AAT-2 (AAT-2a, -2b, and-2c) have been identified. It was hypothesized that two alleles occur at the AAT-2 locus, giving rise to the three AAT-2 enzymes. In a prior study bidirectional selection for root nodule AAT and asparagine synthetase (AS) activities on a nodule fresh weight basis in two diverse alfalfa germ plasms resulted in high nodule enzyme activity subpopulations with about 20% more nodule AAT activity than low enzyme activity subpopulations. The objectives of the study presented here were to determine the inheritance of nodule AAT-2 production and to evaluate the effect of bidirectional selection for AAT and AS on AAT-2 allelic frequencies, the relative contributions of AAT-1 and AAT-2 to total nodule activity, nodule enzyme concentration, and correlated traits. Two alleles at the AAT-2 locus were verified by evaluating segregation of isozyme phenotypes among F1 and S1 progeny of crosses or selfs. Characterization of subpopulations for responses associated with selection was conducted using immunoprecipitation of in vitro nodule AAT activity, quantification of AAT enzyme protein by ELISA, and AAT activity staining of native isozymes on PAGE. Results indicate that selection for total AAT activity specifically altered the expression of the nodule AAT-2 isozyme. AAT-2 activity was significantly greater in high compared to low activity subpopulations, and high AAT subpopulations from both germ plasms had about 18% more AAT-2 enzyme (on a nodule fresh weight basis). No significant or consistent changes in AAT-2 genotypic frequencies in subpopulations were caused by selection for AAT activity. Since changes in AAT activity were not associated with changes in AAT-2 genotype, selection must have affected a change(s) at another locus (or loci), which indirectly effects the expression of nodule AAT.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products or vendors that might also be suitable  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号