首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.  相似文献   

2.
<正>Dear Editor,Cumulative evidence supports the role of early-life viral infections,especially respiratory syncytial virus(RSV)and human rhinovirus(HRV),as major antecedents of childhood asthma(Lemanske,2002;Jackson et al.,2008).In this study,the x TAG respiratory viral panel FAST(RVP FAST)assay,a multiplex polymerase chain reaction(PCR)-based method(Arens et al.,2010;BaladaLlasat et al.,2011;Gharabaghi et al.,2011;Selvaraju,2012),was used to investigate the association of infec-  相似文献   

3.
4.
5.
Heterosis,one of the most important biological phenomena,refers to the phenotypic superiority of a hybrid over its genetically diverse parents with respect to many traits such as biomass,growth rate and yield.Despite its successful application in breeding and agronomic production of many crop and animal varieties,the molecular basis of heterosis remains elusive.The classic genetic explanations for heterosis centered on three hypotheses:dominance (Davenport,1908;Bruce,1910;Keeble and Pellew,1910;Jones,1917),overdominance (East,1908;Shull,1908) and epistasis (Powers,1944;Yu et al.,1997).However,these hypotheses are largely conceptual and not connected to molecular principles,and are therefore insufficient to explain the molecular basis of heterosis (Birchler et al.,2003).Recently,many studies have explored the molecular mechanism of heterosis in plants at a genome-wide level.These studies suggest that global differential gene expression between hybrids and parental lines potentially contributes to heterosis in plants (e.g.,Swanson-Wagner et al.,2006;Zhang et al.,2008;Wei et al.,2009;Song et al.,2010).Research suggests that genetic components,including cis-acting elements and trans-acting factors,are critical regulators of differential gene expression in hybrids (Hochholdinger and Hoecker,2007;Springer and Stupar,2007;Zhang et al.,2008).However,other research indicates that epigenetic components,the regulators of chromatin states and genome activity,also have the potential to impact heterosis (e.g.,Ha et al.,2009;He et al.,2010;Groszmann et al.,2011;Barber et al.,2012;Chodavarapu et al.,2012;Greaves et al.,2012a;Shen et al.,2012).  相似文献   

6.
7.
8.
Cell differentiation has been associated with changes in mechanical stiffness in single-cell systems, yet it is unknown whether this association remains true in a multicellular context, particularly in developing tissues. In order to address such questions, we have developed a methodology, termed quantitative tandem epifluorescence and nanoindentation, wherein we sequentially determine cellular genetic identity with confocal microscopy and mechanical properties with atomic force microscopy. We have applied this approach to examine cellular stiffness at the shoot apices of Arabidopsis (Arabidopsis thaliana) plants carrying a fluorescent reporter for the CLAVATA3 (CLV3) gene, which encodes a secreted glycopeptide involved in the regulation of the centrally located stem cell zone in inflorescence and floral meristems. We found that these CLV3-expressing cells are characterized by an enhanced stiffness. Additionally, by tracking cells in young flowers before and after the onset of GREEN FLUORESCENT PROTEIN expression, we observed that an increase in stiffness coincides with this onset. This work illustrates how quantitative tandem epifluorescence and nanoindentation can reveal the spatial and temporal dynamics of both gene expression and cell mechanics at the shoot apex and, by extension, in the epidermis of any thick tissue.Morphogenesis is a complex process that results from the coordinated actions of many genes and gene products across developing tissues and organs. Because shape is a function of the structural elements of cells, the molecular and genetic control of growth and morphogenesis must rely on the regulation of the mechanics of these elements. In this context, cell differentiation has been linked with mechanical stiffness in animal single-cell systems (Collinsworth et al., 2002; Balland et al., 2006; Engler et al., 2006; Darling et al., 2008), although the direct measurement of cell mechanics in growing animal tissues remains elusive (Blanchard and Adams, 2011; Davidson, 2011).In plants, growth involves a delicate mechanical balance: it is powered by turgor pressure and contained by cell wall stiffness (Cosgrove, 1986). Several groups have recently achieved mechanical measurements made at a subcellular resolution in plants (Milani et al., 2011; Peaucelle et al., 2011; Fernandes et al., 2012; Radotić et al., 2012; Routier-Kierzkowska et al., 2012) using scaled-down indentation methods (Geitmann, 2006; Hayot et al., 2012; Milani et al., 2013; Routier-Kierzkowska and Smith, 2013), wherein one quantifies the force needed to push down on a sample to a prescribed depth. These studies have revealed spatiotemporal patterns of stiffness, notably in tissues (Milani et al., 2011; Peaucelle et al., 2011; Fernandes et al., 2012; Routier-Kierzkowska et al., 2012).However, these measurements have not been associated directly with cell identity. This association would become feasible if mechanical measurements were combined with optical imaging of fluorescent reporters. Such a combination, termed nanoindentation coupled to inverted optical microscopy, has already been developed for single animal cells and for thin plant tissues, (Rotsch and Radmacher, 2000; Routier-Kierzkowska and Smith, 2014), but it cannot be extended to thick tissues because they are opaque, making it impossible to simultaneously observe the tissue surface optically with an inverted microscope and probe it mechanically. To circumvent this difficulty, we have developed a methodology involving the use of three microscopes to image the same sample: (1) an atomic force microscope (AFM), which is a nanoindentation system for obtaining stiffness maps of the surface of a sample; (2) an AFM-coupled upright epifluorescence macroscope to precisely identify the points to be probed; and (3) a confocal microscope to determine cell fate at cellular resolution, which may in turn be correlated with the stiffness maps. We call this methodology quantitative tandem epifluorescence and nanoindentation (qTEN), and we use it to probe the shoot apical meristem (SAM) of Arabidopsis (Arabidopsis thaliana), which is a good model system in which to investigate morphogenesis.The SAM is located at the growing tip of the shoot and consists of distinct functional zones (Ha et al., 2010). One of these zones is the slow-dividing central zone (CZ), which can be defined by the expression of the CLAVATA3 (CLV3) signaling glycopeptide. Through cell division, cells exit the CZ into the surrounding peripheral zone (PZ). In the PZ, cells proliferate rapidly, and some become incorporated into organ primordia, thus yielding all aerial organs of the plant. Recent work on the SAM has revealed patterns of mechanical properties (Milani et al., 2011; Peaucelle et al., 2011; Kierzkowski et al., 2012; Braybrook and Peaucelle, 2013), but it is still unclear how these patterns are related to the activity of the SAM or to its functional zonation. Here, we analyze the dynamics of such a mechanical pattern in vivo and show that it is spatially and temporally related to stem cell fate.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The S6 kinase signaling pathway in the control of development and growth   总被引:15,自引:0,他引:15  
  相似文献   

16.
17.
Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses.Roots have developed adaptive strategies to reprogram their gene expression and metabolic activity in response to heterogeneous soil environments (Osmont et al., 2007). By this way, local environmental stimuli can be integrated into the developmental program of roots (Forde, 2014; Giehl and von Wirén, 2014). In resource-depleted environments, an important heterogeneously distributed soil factor is nutrient availability, which then directs lateral root growth preferentially into nutrient-rich patches (Zhang and Forde, 1998; Lima et al., 2010; Giehl et al., 2012). Such directed lateral root development depends on regulatory networks that integrate both local and systemic signals to coordinate them with the overall plant nutritional status (Ruffel et al., 2011; Guan et al., 2014). As shown by the impact of the N status-dependent regulatory module CLAVATA3/EMBRYO-SURROUNDING REGION-related peptides-CLAVATA1 leucine-rich repeat receptor-like kinase, economizing the costs for root development is pivotal for a resource-efficient strategy in nutrient acquisition (Araya et al., 2014). In recent years, strategies on yield and efficiency improvement have been developed that are primarily based on the manipulation of root system architecture (Gregory et al., 2013; Lynch, 2014; Meister et al., 2014). A common imperative of these strategies is to develop crops that use water and nutrients more efficiently, allowing the reduction of fertilizer input and potentially hazardous environmental contamination.Maize (Zea mays) plays an eminent role in global food, feed, and fuel production, which is also a consequence of its unique root system (Rogers and Benfey, 2015). The genetic analysis of maize root architecture revealed a complex molecular network coordinating root development during the whole lifecycle (for review, see Hochholdinger et al., 2004a, 2004b). Identification of root type-specific lateral root mutants in maize emphasized the existence of regulatory mechanisms involved in the branching of embryonic roots, which are distinct from those in postembryonic roots (Hochholdinger and Feix, 1998; Woll et al., 2005). Under heterogeneous nutrient supplies, nitrate-rich patches increased only the length of lateral roots in primary and seminal roots, whereas they increased both length and density of lateral roots from shoot-borne roots of adult maize plants (Yu et al., 2014a). Remarkably, modulation of the extensive postembryonic shoot-borne root stock has a great potential to improve grain yield and nutrient use efficiency (Hochholdinger and Tuberosa, 2009).Lateral root branching is critical to secure anchorage and ensure adequate uptake of water and nutrients. In maize, these roots originate from concentric single-file layers of pericycle and endodermis cells (Fahn, 1990; Jansen et al., 2012). Lateral root initiation is the result of auxin-dependent cell cycle progression (Beeckman et al., 2001; Jansen et al., 2013a). Most of the molecular changes during the cell cycle like, for instance, the induction of positive regulators, such as cyclins (CYCs) and cyclin-dependent kinases (CDKs), and the repression of Kip-related proteins (KRPs), thus account for a reactivation of the cell cycle (Beeckman et al., 2001; Himanen et al., 2002, 2004). In eukaryotes, ubiquitin-mediated degradation of cell cycle proteins plays a critical role in the regulation of cell division (Hershko, 2005; Jakoby et al., 2006). Conjugation of ubiquitin to a substrate requires the sequential action of three enzymes: ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase (E3). The E3 enzymes are responsible for the specificity of the pathway, and several classes of E3 enzymes have been implicated in cell cycle regulation, including the S-Phase Kinase-Associated Protein1-cullin-F-box protein (SCF) and Really Interesting New Gene (RING) finger-domain ubiquitin ligases (Del Pozo and Manzano, 2014). The F-box protein S-Phase Kinase-Associated Protein 2B (SKP2B) encodes an F-box ubiquitin ligase, which plays an important role in the cell cycle by regulating the stability of KRP1 and pericycle founder cell division during lateral root initiation (Ren et al., 2008; Manzano et al., 2012).It has been shown that auxin is involved in long-distance signaling to adjust root growth in response to local nutrient availability (Giehl et al., 2012), and it is likely to serve in long-distance signaling for local nutrient responses as well (for review, see Rubio et al., 2009; Krouk et al., 2011; Saini et al., 2013; Forde, 2014). Polar auxin transport is instrumental for the generation of local auxin maxima, which guide these cells to switch their developmental program (Vanneste and Friml, 2009; Lavenus et al., 2013). In Arabidopsis (Arabidopsis thaliana), the PIN-FORMED (PIN) family of auxin efflux carrier proteins controls the directionality of auxin flows to maximum formation at the tip or pericycle cells (Benková et al., 2003; Laskowski et al., 2008; Marhavý et al., 2013). Auxin responses in protoxylem or protophloem cells of the basal meristem coincide with the site of lateral root initiation (De Smet et al., 2007; Jansen et al., 2012). In these defined pericycle cells, the phloem pole pericycle founder cells are primed before auxin accumulation occurs (De Smet et al., 2007; Jansen et al., 2012, 2013a). In contrast to dicots, the larger PIN family in monocots has a more divergent phylogenetic structure (Paponov et al., 2005). It is likely that monocot-specific PIN genes regulate monocot-specific morphogenetic processes, such as the development of a complex root system (Wang et al., 2009; Forestan et al., 2012).The molecular control of lateral root initiation of the root system to heterogeneous nitrate availabilities is not yet understood in maize. In this study, the plasticity of lateral root induction in adult shoot-borne roots of maize in response to local high concentration of nitrate was surveyed in an experimental setup that simulated patchy nitrate distribution. RNA-sequencing (RNA-Seq) experiments and cell type-specific gene expression analyses showed that local nitrate triggers progressive cell cycle control during pericycle cell division. In addition, tissue-specific determination of indole-3-acetic acid (IAA) and its metabolites combined with auxin maxima determination by DR5 supported a role of basipetal auxin transport during lateral root initiation in shoot-borne roots. Thereby, this study provides unique insights in how auxin orchestrates cell cycle control under local nitrate stimulation in the shoot-borne root system of maize.  相似文献   

18.
Linker histones play an important role in the packing of chromatin. This family of proteins generally consists of a short, unstructured N-terminal domain, a central globular domain, and a C-terminal domain (CTD). The CTD, which makes up roughly half of the protein, is intrinsically disordered in solution but adopts a specific fold upon interaction with DNA (Fang et al., 2012). While the globular domain structure is well characterized, the structure of the CTD remains unknown. Sequence alignment alone does not reveal any significant homologs for this region of the protein. Construction of a model thus requires additional information. For example, the atomic model for the rat histone H1d CTD, proposed over a decade ago, used novel bioinformatics tools and biochemical data (Bharath et al., 2002). New fluorescence resonance energy transfer (FRET) studies of the folding of the CTD in the presence of linear DNA, single nucleosomes, and oligonucleosomal arrays (Caterino et al., 2011; Fang et al., 2012) have stimulated our interest in constructing a dynamic model of the protein. We have obtained preliminary information about the structure and dynamics of the linker histone CTD through ab initio folding simulations using the Rosetta modeling package (Rohl et al., 2004). By analyzing a large number of conformations sampled through a Monte Carlo procedure, we get a clearer picture of the preferred states of the protein and its dynamics. Our results show that the CTD may frequently adopt a structure with 3–5 helices and helix-turn-helix motifs in specific regions. Some of the best scoring structures show high similarity with the HMG-box-containing proteins previously used as templates by Bharath et al. Further clustering analysis of our results hints of a preferred set of conformations for the CTD of the linker histone. Comparison of these models with distances measured by FRET may help account for the distinct structures of the CTD observed upon binding to different macromolecular partners.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号