首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY. 1. Total seston, and invertebrate drift were studied before and after lime addition to Fyllean River, a stream-iake system in Halland county, southwest Sweden, with poorly buffered waters undergoing acidification. 2. The largest effect of liming was on the chemistry of the water. Following liming with 23 mg CaCO3 l?1 the pH of the water changed from 5.8 to 6.8 and alkalinity from 0.04 to 0.13 meq l?1.Turbidity increased from 3.4 to 4.7 JTU with no change in colour. 3. Dissolved organic carbon (DOC) concentration of all samples was in the range 10.7–13.3 mg C l?1 with no significant change occurring due to liming. 4. Total seston increased from 4.35 mg DM 1?1 in unlimed conditions to 6.25 mg DM l?1 after lime addition. All significant changes in seston occurred in the smaller size fraction (0.45–25 μm). 5. Liming reduced the organic content of the partieulate material from an average of 61% to 39% immediately downstream of a lime silo (within 1 km) but had little effect when the river course was interrupted by lakes and impoundments. 6. The lakes in the river system had a larger effect on seston concentration than any effect of the lime addition by itself. Particle concentrations were reduced by 50–55% and DOC by about 1 mg C l?1as the water passed through the lakes. 7. Macroinvertebrate drift density was low in all samples before and after liming and typical of oligotrophic streams. Drift was significantly lower at limed (0.024 ind. m?3) than at unlimed (0.083 ind. m?3) locations. The decrease was only in total drift density with no significant change in the relative abundance of functional groups or in densities of single taxa, except for a reduction in drift of predators in the limed condition.  相似文献   

2.
Small streams that drain agricultural landscapes have come under close scrutiny as potentially significant indirect sources of greenhouse gases (GHGs) to the atmosphere. By exploring the stream-ground water connection in three dimensional space (horizontally and vertically beneath the stream channel, and longitudinally along the stream corridor) our results show (1) ground water can be a significant source of greenhouse gases to streams draining agricultural watersheds with concentrations in excess of atmospheric equilibrium by 221?μmol?C?L?1 carbon dioxide, 0.64?μmol?C?L?1 methane, and 0.65?μmol?N?L?1 nitrous oxide (N2O); (2) changes in the stream-ground water connection can create seemingly erratic patterns in GHG concentrations over short longitudinal distances (order of meters); (3) soil-stream interfaces are hotspots for denitrification and methanogenesis; however, no significant N2O production was observed at such an interface under a riparian forest; and (4) nitrate (NO3 ?) and N2O can be preserved as electron acceptors in oxic ground waters draining agriculture landscapes; hence, soil nitrification was the major source of N2O to stream water, with a legacy in ground water dating back to the 1960s; N2O tracked the seepage of NO3 ? into surface waters. In this study, we demonstrate the utility of detailed measurements of multiple trace gases towards revealing spatial and temporal patterns of surface–ground water interactions and biogeochemistry across several small baseflow-dominated stream ecosystems in central Wisconsin, USA.  相似文献   

3.
To determine the chemical and physicochemical characteristics of dissolved organic carbon in the Ado River and the Yasu River, the main rivers flowing into Lake Biwa, the adsorption behavior onto hydrous iron oxide (HIO) and the reactivity to KMnO4 oxidant were investigated in parallel with measurement of the distribution profiles of dissolved organic carbon (DOC) along the rivers. In one year of observation at the mouths of the two rivers, DOC concentrations were found to vary in the Ado over the range 0.28–1.21 mg C l−1 and in the Yasu over the range 1.01–2.68 mg C l−1. Act-DOC, one of the fractions separated from the total DOC by its adsorption-active character onto HIO at pH 4, was thought primarily to control the variation of total DOC, as in Lake Biwa. The int-DOC, another fraction separated by its adsorption-inert or -inactive character onto HIO, remained at almost a steady value around 0.18 ± 0.07 mg C l−1 in the Ado, which was lower than that (0.35 ± 0.05 mg C l−1) in Lake Biwa. The act-DOC in river waters was reactive to KMnO4 oxidant, showing a linear relation with the amount of permanganate consumed for the reaction (chemical oxygen demand: COD). In river waters, the relation can be approximated by a straight line expressed as COD (mg O2 l−1) = 0.64 × act-DOC (mg C l−1) − 0.02. In contrast, in the lake water the relation was COD (mg O2 l−1) = 0.97 × act-DOC (mg C l−1) − 0.50. Received: March 3, 1999 / Accepted: December 2, 1999  相似文献   

4.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

5.
Cerbin  S.  Balayla  D. J.  Van de Bund  W. J. 《Hydrobiologia》2003,494(1-3):111-117
Groundwater is a major influence on the hydrological, chemical and thermal regime of chalk streams in the southern U.K. However, little is currently known about the nature of the sediment delivery system within these chalk stream systems, even though sediment-related problems have been increasingly cited as a cause of habitat degradation and of declining salmonid stocks. To address this knowledge gap, suspended sediment fluxes were monitored at 4 sites within the Hampshire Avon catchment between February 1999 and August 2000. Maximum suspended sediment concentrations ranged from nearly 45 mg l–1 to 260 mg l–1. Over the study period, annual suspended sediment loads ranged from 644 to 6215 t yr–1 and annual specific sediment yields ranged from 1.4 to 12.5 t km–2 yr–1. The results show that, relative to other U.K. rivers, the study chalk streams are characterised by low suspended sediment concentrations and loads and less episodic behaviour.  相似文献   

6.
Climate and environmental changes are having profound impacts on Arctic river basins, but the biogeochemical response remains poorly understood. To examine the effect of ice formation on temporal variations in composition and fluxes of carbon and nutrient species, monthly water and particulate samples collected from the lower Yukon River between July 2004 and September 2005 were measured for concentrations of organic and inorganic C, N, and P, dissolved silicate (Si(OH)4), and stable isotope composition (δD and δ18O). All organic carbon and nutrient species had the highest concentration during spring freshet and the lowest during the winter season under the ice, indicating dominant sources from snowmelt and flushing of soils in the drainage basin. In contrast, inorganic species such as dissolved inorganic carbon (DIC) and Si(OH)4 had the highest concentrations in winter and the lowest during spring freshet, suggesting dilution during snowmelt and sources from groundwater and leaching/weathering of mineral layer. The contrasting relation with discharge between organic, such as dissolved organic carbon (DOC), and inorganic, such as DIC and Si(OH)4, indicates hydrological control of solute concentration but different sources and transport mechanisms for organic and inorganic carbon and nutrient species. Concentration of DOC also shows an inter-annual variability with higher DOC in 2005 (higher stream flow) than 2004 (lower stream flow). Average inorganic N/P molar ratio was 110?±?124, with up to 442 under the ice and 38–70 during the ice-open season. While dissolved organic matter had a higher C/N ratio under the ice (45–62), the particulate C/N ratio was lower during winter (21–26) and spring freshet (19). Apparent fractionation factors of C, N, P, Si and δD and δ18O between ice and river water varied considerably, with high values for inorganic species such as DIC and Si(OH)4 (45 and 9550, respectively) but lower values for DOC (4.7). River ice formation may result in fractionation of inorganic and organic solutes and the repartitioning of seasonal flux of carbon and nutrient species. Annual export flux from the Yukon River basin was 1.6?×?1012 g-DOC, 4.4?×?1012 g-DIC, and 0.89?×?1012 g-POC during 2004–2005. Flux estimation without spring freshet sampling results in considerable underestimation for organic species but significant overestimation for inorganic species regardless of the flux estimation methods used. Without time-series sampling that includes frozen season, an over- or under-estimation in carbon and nutrient fluxes will occur depending on chemical species. Large differences in carbon export fluxes between studies and sampling years indicate that intensive sampling together with long-term observations are needed to determine the response of the Yukon River to a changing climate.  相似文献   

7.
The Yolo Bypass, a large, managed floodplain that discharges to the headwaters of the San Francisco Estuary, was studied before, during, and after a single, month-long inundation by the Sacramento River in winter and spring 2000. The primary objective was to identify hydrologic conditions and other factors that enhance production of phytoplankton biomass in the floodplain waters. Recent reductions in phytoplankton have limited secondary production in the river and estuary, and increased phytoplankton biomass is a restoration objective for this system. Chlorophyll a was used as a measure of phytoplankton biomass in this study. Chlorophyll a concentrations were low (<4 μg l?1) during inundation by the river when flow through the floodplain was high, but concentrations rapidly increased as river inflow decreased and the floodplain drained. Therefore, hydrologic conditions in the weeks following inundation by river inflow appeared most important for producing phytoplankton biomass in the floodplain. Discharges from local streams were important sources of water to the floodplain before and after inundation by the river, and they supplied dissolved inorganic nutrients while chlorophyll a was increasing. Discharge from the floodplain was enriched in chlorophyll a relative to downstream locations in the river and estuary during the initial draining and later when local stream inflows produced brief discharge pulses. Based on the observation that phytoplankton biomass peaks during drainage events, we suggest that phytoplankton production in the floodplain and biomass transport to downstream locations would be higher in years with multiple inundation and draining sequences.  相似文献   

8.
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land–water–atmosphere interfaces is sometimes mentioned, low‐order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2) from running waters within a 67 km2 boreal catchment was studied. During a 4 year period (2006–2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high‐resolution (5 × 5 m) grid‐based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m?2 yr?1) of the entire stream C flux (9.6 (±2.4) g C m?2 yr?1) (lateral as DIC, DOC, and vertical as CO2). In addition, 72% of the total CO2 loss took place already in the first‐ and second‐order streams. This study demonstrates the importance of including CO2 evasion from low‐order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.  相似文献   

9.
Temperature and the metabolic balance of streams   总被引:1,自引:0,他引:1  
1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes. 2. Here, we used a ‘natural experiment’ to demonstrate the role of temperature and nutrient cycling in whole‐system metabolism (ER, GPP and net ecosystem production – NEP), in naturally heated geothermal (5–25 °C) Icelandic streams. 3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1–25 g C m?2 day?1 and GPP 1–10 g C m?2 day?1. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively. 4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments. 5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year?1 at 13 °C to 0.21 (0.15–0.33) Pg C year?1 with a 5 °C warming. 6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability. 7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO2 flux back to the atmosphere.  相似文献   

10.
Inland freshwaters transform and retain up to half of the carbon that enters from the terrestrial environment and have recently been recognized as important components of regional and global carbon budgets. However, the importance of small streams to these carbon budgets is not well understood due to the lack of globally-distributed data, especially from streams draining agricultural landscapes. We quantified organic carbon pools and heterotrophic metabolism seasonally in 6 low-order streams draining row-crop fields in northwestern Indiana, USA, and used these data to examine patterns in organic carbon spiraling lengths (SOC; km), downstream velocities (VOC; m/d), and turnover rates (KOC; day?1). There were seasonal differences in SOC, with the longest spiraling lengths in winter (range: 7.7–54.4?km) and the shortest in early and late summer (range: 0.2–9.0?km). This seasonal pattern in SOC was primarily driven by differences in discharge, suggesting that hydrology tightly controls the fate of organic carbon in these streams. KOC did not differ seasonally, and variability (range: 0.0007–0.0193?day?1) was controlled by differences in stream water soluble reactive phosphorus concentrations. Compared to previous studies conducted primarily in forested streams, agricultural streams tended to be less retentive of organic carbon. These systems function predominantly as conduits transporting organic carbon to downstream ecosystems, except during low, stable-flow periods (i.e., late summer) when agricultural streams can be as retentive of organic carbon as forested headwaters. High organic carbon retention in the late summer has implications for coupled carbon and nitrogen cycling (i.e., denitrification), which may play an important role in removing nitrate from stream water during periods of low flow.  相似文献   

11.
Monitoring data over the period 1994–2007 were analysed for three streams (Cottage Hill Sike, CHS; Rough Sike, RS; Trout Beck, TB) draining blanket peat underlain by glacial clay and limestone-rich sub-strata at Moor House (Northern England). Dissolved organic carbon concentration, [DOC], showed complex relationships with both discharge and calcium concentration, [Ca]. A model based on [Ca] was constructed to simulate stream [DOC] by mixing dissolved organic matter (DOM) from shallow peat, quantified by measured [DOC] (15–30 mg l?1) in peat porewater, with DOM assumed to be present at a constant concentration (c. 5 mg l?1) in groundwater. A temperature-based adjustment to the measured porewater [DOC] was required to account for relatively low streamwater [DOC] during winter and spring. The fitted model reproduced short-term variation in streamwater [DOC] satisfactorily, in particular variability in RS and TB due to groundwater contributions. Streamwater DOM is largely derived from surface peat, which accounts for more than 96% of the total DOC flux in both RS and TB, and 100% in CHS. Model outputs were combined with streamwater and porewater DO14C data to estimate the 14C contents, and thereby the ages, of DOM from peat and groundwater. The peat-derived DOM is 5 years old on average, with most of it very recently formed. The derived age of groundwater DOM (8,500 years) is comparable to the 4,000–7,000 years estimated from the DO14C of water extracts of clay underlying the peat, suggesting that the clay is the source of groundwater DOM.  相似文献   

12.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

13.
1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton‐rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were low in a groundwater‐fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related to concentrations of chlorophyll and POC but not to DOC. The ratio of oxygen consumption rate to total organic concentrations (DOC + POC), serving as a measure of organic degradability, was highest downstream of lakes, intermediate in open streams and lowest in forest streams. 4. Temperature coefficients describing the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C?1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream of lakes during summer because of higher temperature and, more significantly, greater concentrations of degradable organic carbon. Oxygen consumption rates were up to seven times higher in the stream with three impoundments than in a neighbouring unshaded stream and 21 times higher than in the groundwater‐fed forest spring. 6. A regional climate model has calculated a dramatic 4–5 °C rise in air temperature over Denmark by 2070–2100. If this is realised, unshaded streams are estimated to become 2–3 °C warmer in summer and winter and 5–7 °C warmer in spring and, thereby, increase oxygen consumption rates at ambient temperature by 30–40% and 80–130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal waters.  相似文献   

14.
Production and accumulation of nitrous oxide (N2O), a major greenhouse gas, in shallow groundwater might contribute to indirect N2O emissions to the atmosphere (e.g., when groundwater flows into a stream or a river). The Intergovernmental Panel on Climate Change (IPCC) has attributed an emission factor (EF5g) for N2O, associated with nitrate leaching in groundwater and drainage ditches—0.0025 (corresponding to 0.25% of N leached which is emitted as N2O)—although this is the subject of considerable uncertainty. We investigated and quantified the transport and fate of nitrate (NO3 ?) and dissolved nitrous oxide from crop fields to groundwater and surface water over a 2-year period (monitoring from April 2008 to April 2010) in a transect from a plateau to the river with three piezometers. In groundwater, nitrate concentrations ranged from 1.0 to 22.7 mg NO3 ?–N l?1 (from 2.8 to 37.5 mg NO3 ?–N l?1 in the river) and dissolved N2O from 0.2 to 101.0 μg N2O–N l?1 (and from 0.2 to 2.9 μg N2O–N l?1 in the river). From these measurements, we estimated an emission factor of EF5g = 0.0026 (similar to the value currently used by the IPCC) and an annual indirect N2O flux from groundwater of 0.035 kg N2O–N ha?1 year?1, i.e., 1.8% of the previously measured direct N2O flux from agricultural soils.  相似文献   

15.
Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble‐mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland‐dominated landscape in temperate North America and identify the origin of the methane emitted from these well‐oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr?1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic‐rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near‐stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.  相似文献   

16.
Faunal and chemical dynamics of some acid and alkaline New Zealand streams   总被引:2,自引:0,他引:2  
SUMMARY 1. Water from acid (pH 4.3–5.7), brown water streams was low in alkalinity (0–2.3 g m?3 CaCO3) and conductivity (2.5–4.1 mS m?1) but contained relatively high concentrations of dissolved organic carbon (6.6–16.3 gm?3). In contrast, alkaline (pH 6.6–8.0), clearwater streams had high CaCO3 (12.6–57.6 g m?3) and conductivity (3.7–22.3 mS m?1) but low dissolved organic carbon concentrations (0.3–4.7 g m?3). 2. Total reactive aluminium (Al) concentrations were high in acid streams (123–363 mg m?3) but never exceeded 84 mg m?3 in alkaline streams. Acid-soluble and organic monomeric Al were the major Al species in the acid streams (31–168 and 84–178mg m?3, respectively). Concentrations of toxic inorganic monomeric Al were low in all streams (<50mg m?3). 3. Sixty-four invertebrate taxa were collected from the alkaline streams compared to forty-seven from the acid sites. Numbers of taxa in specific insect orders were similar at all sites, however. Benthic faunas at most sites were dominated by the mayfly Deleatidium sp. and chironomids. 4. Overall, mean densities of benthic invertebrates were 2.4–4.8 times higher in alkaline streams than acid streams. No seasonal patterns of abundance were evident at any site. 5. Temporal variability of invertebrate densities was correlated with stream channel stability such that fluctuations in densities declined as stability increased. 6. Sources of dissolved organic carbon and aluminium in acid, brown water streams are discussed. We suggest that changes in the food supply available in acid streams account for the depauperate faunas found there.  相似文献   

17.
1. Aerobic respiration, productivity and the carbon turnover rate of microbial biofilms were determined at hyporheic and phreatic sites in the Kalispell Valley alluvial aquifer along a transect extending 3.9 km laterally from the main channel of the Flathead River, a sixth order river in Montana (U.S.A.). The effect of experimentally increasing bioavailable organic carbon (acetate) on the respiration rate of biofilms in this carbon‐poor [dissolved organic carbon (DOC) < 2 mg L?1] aquifer was also measured. 2. Chambers containing natural substratum were placed in‐situ and allowed to colonise for 20 weeks. After 4, 12 and 20 weeks, they were taken to the laboratory where oxygen flux was measured in a computer‐controlled, flow‐through respirometry system. 3. Respiration ranged from 0.01 to 0.33 mg O2 dm?3 h?1 across sites, with means ranging from 0.10 to 0.17 mg O2 dm?3 h?1. Productivity estimates ranged from 0.18 to 0.32 mg C dm?3 day?1 (mean 0.25, SE 0.03). The total organic carbon (TOC) of the microbial biofilms ranged from 18.2 to 29.7 mg C dm?3. Turnover rate ranged from 3.2 to 5.6 year?1 with a mean of 4.2 year?1. 4. At the hyporheic site very close to the river, respiration did not significantly increase when samples were supplemented with labile carbon. Respiration increased with increasing DOC addition at hyporheic sites more distant from the river, suggesting a carbon‐limitation gradient within the hyporheic zone. Microbes at the phreatic site did not respond to increasing DOC addition, suggesting that the phreatic biofilm is adapted to low carbon availability. 5. Comparing the volume of the alluvial aquifer (about 0.7 km3) to that of the river benthic sediments (to 0.25 m depth, which amounts to about 1.6 × 10?4 km3) within the Flathead Valley, leads to the conclusion that interstitial microbial productivity is orders of magnitude greater than benthic productivity. Alluvial aquifers are often voluminous and microbial production is an enormous component of ecosystem production in rivers such as the Flathead.  相似文献   

18.
Dissolved organic carbon (DOC) in streams draining hydrologically modified and intensively farmed watersheds has not been well examined, despite the importance of these watersheds to water quality issues and the potential of agricultural soils to sequester carbon. We investigated the dynamics of DOC for 14 months during 2006 and 2007 in 6 headwater streams in a heavily agricultural and tile-drained landscape in the midwestern US. We also monitored total dissolved nitrogen (TDN) in the streams and tile drains. The concentrations of DOC in the streams and tile drains ranged from approximately 1–6 mg L?1, while concentrations of TDN, the composition of which averaged >94% nitrate, ranged from <1 to >10 mg L?1. Tile drains transported both DOC and TDN to the streams, but tile inputs of dissolved N were diluted by stream water, whereas DOC concentrations were generally greater in the streams than in tile drains. Filamentous algae were dense during summer base flow periods, but did not appear to contribute to the bulk DOC pool in the streams, based on diel monitoring. Short-term laboratory assays indicated that DOC in the streams was of low bioavailability, although DOC from tile drains in summer had bioavailability of 27%. We suggest that these nutrient-rich agricultural streams are well-suited for examining how increased inputs of DOC, a potential result of carbon sequestration in agricultural soils, could influence ecosystem processes.  相似文献   

19.
1. We determined the longitudinal pattern of organic matter concentration, quality, size composition and spiralling length along a 310-km grassland river system (Taieri River, New Zealand). 2. Organic seston concentration (0.24–4.05 mg ash-free dry mass (AFDM) l–1) and dissolved organic carbon (DOC) concentration (2.3–5.7 mg C l–1) showed no obvious longitudinal patterns. In contrast, there was a significant downstream increase in inorganic seston concentration (0.13–13.73 mg ash l–1), presumably because of a downstream increase in the proportion of the catchment developed for agriculture. 3. Although there was a trend toward increasing particle size in the first 25 km of the river continuum, organic seston was primarily composed of ultrafine particles (0.6–30 μm) at all study sites. The ratio of coarse (> 250 μm) to ultrafine organic seston decreased logarithmically down the continuum. Organic content generally decreased with particle size. Ultrafine particles, however, had significantly higher organic fractions than fine (60–100 μm) and very fine (30–60 μm) particles. 4. Daily organic carbon turnover length ranged from 10 to 98 km and increased downstream. This is consistent with other studies along river continua and suggests that organic carbon turnover length is largely controlled by the relationship between channel dimensions and discharge, rather than the presence of specific retention devices. 5. Concentrations and nutritional quality of organic seston and concentrations of DOC were highest in an unconstrained floodplain reach in the upper river. These data suggest that new material enters the river channel in this reach, potentially providing an important energy source for the river community downstream. The effect of this reach on the longitudinal pattern of organic matter concentration and quality emphasizes how changes in channel form can alter river ecosystem structure and function.  相似文献   

20.
The emission of nitrous oxide (N2O) from streams draining agricultural landscapes is estimated by the Intergovernmental Panel on Climate Change (IPCC) to constitute a globally significant source of this gas to the atmosphere, although there is considerable uncertainty in the magnitude of this source. We measured N2O emission rates and potential controlling variables in 12 headwater streams draining a predominantly agricultural basin on glacial terrain in southwestern Michigan. The study sites were nearly always supersaturated with N2O and emission rates ranged from ?8.9 to 266.8 μg N2O‐N m?2 h?1 with an overall mean of 35.2 μg N2O‐N m?2 h?1. Stream water NO3? concentrations best‐predicted N2O emission rates. Although streams and agricultural soils in the basin had similar areal emission rates, emissions from streams were equivalent to 6% of the anthropogenic emissions from soils because of the vastly greater surface area of soils. We found that the default value of the N2O emission factor for streams and groundwater as defined by the IPCC (EF5‐g) was similar to the value observed in this study lending support to the recent downward revision to EF5‐g. However, the EF5‐g spanned four orders of magnitude across our study sites suggesting that the IPCC's methodology of applying one emission factor to all streams may be inappropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号