首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To better understand the historical biogeography of the true seals, Phocidae, by combining nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in a divergence time analysis using multiple fossil calibrations. Location Arctic, Antarctic, Pacific and Atlantic Oceans, Lake Baikal, Caspian Sea. Methods Fifteen nuclear genes totalling 8935 bp plus near‐complete mitochondrial genome sequences were used in a Bayesian divergence time analysis, incorporating eight soft‐bound fossil calibrations across the phylogeny. All species of true seals were included, plus the walrus, three otariids and seven carnivore outgroups. The majority of the nuclear sequences and four phocid mitochondrial genomes (plus three non‐phocid mitochondrial genomes) were newly generated for this study using DNA extracted from tissue samples; other sequences were obtained from GenBank. Results Using multiple nuclear genes and multiple fossil calibrations resulted in most divergence time estimations within Phocidae being much more recent than predicted by other molecular studies incorporating only mtDNA and using a single calibration point. A new phylogenetic hypothesis was recovered for the Antarctic seals. Main conclusions Incorporating multiple nuclear genes and fossil calibrations had a profound effect on the estimated divergence times. Most estimated divergences within Phocinae (Arctic seals) correspond to Arctic oceanic events and all occur within the last 12 Myr, a time when the Arctic and Atlantic oceans were freely exchanging and perennial Arctic sea ice existed, indicating that the Arctic seals may have had a longer association with ice than previously thought. The Monachinae (‘southern’ seals) split from the Phocinae c. 15 Ma on the eastern US coast. Several early trans‐Atlantic dispersals possibly occurred, leaving no living descendants, as divergence estimates suggest that the Monachus (monk seal) species divergences occurred in the western Atlantic c. 6 Ma, with the Mediterranean monk seal ancestor dispersing afterwards. The tribes Lobodontini (Antarctic seals) and Miroungini (elephant seals) are also estimated to have diverged in the eastern Atlantic c. 7 Ma and a single Lobodontini dispersal to Antarctica occurred shortly afterwards. Many of the newly estimated dates are used to infer how extinct lineages/taxa are allied with their living relatives.  相似文献   

2.
Despite extensive interest in the systematics of Pinnipedia, questions remain concerning phylogenetic relationships within the Phocidae or "true" seals. Relationships within the phocids and their placement relative to the remaining pinnipeds and major lineages of arctoid carnivores were examined using a large molecular data set consisting of 12 mitochondrial protein coding genes. Phylogenetic analysis including 15 extant species of the Phocidae, and representatives of the Otariidae, Odobenidae, Ursidae, Mustelidae, Canidae, and Felidae confirmed the monophyletic origins of the Pinnipedia within the Arctoidea. Slightly more support was found for an ursid affinity of the pinnipeds, however, this relationship remains contentious. The Phocidae were placed as the sister group to a common odobenid-otariid clade. Within the family Phocidae, strong support for the traditionally accepted subfamilies Phocinae (northern seals), and Monachinae (southern seals plus monk seals) was found. In contrast to recent suggestions, a monophyletic Monachus was strongly supported and was placed in a deep branching position within the Monachinae. Evidence from sequence divergence under a maximum likelihood model illustrated that the rarely used tribal distinction within the Monachinae are comparable, in terms of evolutionary distance, to accepted tribal distinctions within the Phocinae. In addition, results suggest that Pagophilus should be accepted as a genus within the Phocini. Sequence divergence between Phoca, Pusa, and Halichoerus is minimal, supporting a taxonomic reclassification of the three genera into an emended genus Phoca, without subgeneric distinctions.  相似文献   

3.
Use of spectral analysis to test hypotheses on the origin of pinnipeds   总被引:10,自引:4,他引:6  
The evolutionary origin of the pinnipeds (seals, sea lions, and walruses) is still uncertain. Most authors support a hypothesis of a monophyletic origin of the pinnipeds from a caniform carnivore. A minority view suggests a diphyletic origin with true seals being related to the mustelids (otters and ferrets). The phylogenetic relationships of the walrus to other pinniped and carnivore families are also still particularly problematic. Here we examined the relative support for mono- and diphyletic hypotheses using DNA sequence data from the mitochondrial small subunit (12S) rRNA and cytochrome b genes. We first analyzed a small group of taxa representing the three pinniped families (Phocidae, Otariidae, and Odobenidae) and caniform carnivore families thought to be related to them. We inferred phylogenetic reconstructions from DNA sequence data using standard parsimony and neighbor-joining algorithms for phylogenetic inference as well as a new method called spectral analysis (Hendy and Penny) in which phylogenetic information is displayed independently of any selected tree. We identified and compensated for potential sources of error known to lead to selection of incorrect phylogenetic trees. These include sampling error, unequal evolutionary rates on lineages, unequal nucleotide composition among lineages, unequal rates of change at different sites, and inappropriate tree selection criteria. To correct for these errors, we performed additional transformations of the observed substitution patterns in the sequence data, applied more stringent structural constraints to the analyses, and included several additional taxa to help resolve long, unbranched lineages in the tree. We find that there is strong support for a monophyletic origin of the pinnipeds from within the caniform carnivores, close to the bear/raccoon/panda radiation. Evidence for a diphyletic origin was very weak and can be partially attributed to unequal nucleotide compositions among the taxa analyzed. Subsequently, there is slightly more evidence for grouping the walrus with the eared seals versus the true seals. A more conservative interpretation, however, is that the walrus is an early, but not the first, independent divergence from the common pinniped ancestor.   相似文献   

4.
Phylogenetic relationships of 79 caniform carnivores were addressed based on four nuclear sequence-tagged sites (STS) and one nuclear exon, IRBP, using both supertree and supermatrix analyses. We recovered the three major arctoid lineages, Ursidae, Pinnipedia, and Musteloidea, as monophyletic, with Ursidae (bears) strongly supported as the basal arctoid lineage. Within Pinnipedia, Phocidae (true seals) were sister to the Otaroidea [Otariidae (fur seals and sea lions) and Odobenidae (walrus)]. Phocid subfamily and tribal designations were supported, but the otariid subfamily split between fur seals and sea lions was not. All family designations within Musteloidea were strongly supported: Mephitidae (skunks), Ailuridae (monotypic red panda), Mustelidae (weasels, badgers, otters), and Procyonidae (raccoons). A novel hypothesis for the position of the red panda was recovered, placing it as branching after Mephitidae and before Mustelidae+Procyonidae. Within Mustelidae, subfamily taxonomic changes are considered. This study represents the most comprehensive sampling to date of the Caniformia in a molecular study and contains the most complete molecular phylogeny for the Procyonidae. Our data set was also used in an empirical examination of the effect of missing data on both supertree and supermatrix analyses. Sequence for all genes in all taxa could not be obtained, so two variants of the data set with differing amounts of missing data were examined. The amount of missing data did not have a strong effect; instead, phylogenetic resolution was more dependent on the presence of sufficient informative characters. Supertree and supermatrix methods performed equivalently with incomplete data and were highly congruent; conflicts arose only in weakly supported areas, indicating that more informative characters are required to confidently resolve close species relationships.  相似文献   

5.
Fur seals and sea lions (Carnivora: Otariidae) evolved in the North Pacific and later dispersed throughout the Southern Hemisphere. However, the timing and number of dispersals into the Southern Hemisphere still remain poorly understood. To determine the biogeographical patterns of dispersal within fur seals and sea lions, we conducted cladistic analyses using combined evidence incorporating morphological and molecular data. The phylogeny produced in this study was then incorporated into Bayesian biogeographical analyses to reconstruct ancestral points of origin and dispersal patterns for otariid clades. Combined evidence analyses supported Callorhinus as the earliest diverging extant otariid, and a strongly supported northern sea lion clade (Zalophus, Eumetopias, and Proterozetes) as the sister group to a southern clade comprising the remainder of Otariidae. Fossil data constrained the timing and location of this dispersal as occurring between 6 and 7 Mya during a period of unusually cool sea surface temperatures and high productivity in the eastern equatorial Pacific, far older than suggested by prior studies. Our study indicates that the distribution of fur seals and sea lions is tightly linked to sea surface temperature and productivity, and suggests that otariids may be vulnerable to future anthropogenic climate change. © 2014 The Linnean Society of London  相似文献   

6.
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals’ vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.  相似文献   

7.
Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae–monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.  相似文献   

8.
Cope's rule describes the evolutionary trend for animal lineages to increase in body size over time. In this study, we tested the validity of Cope's rule for a marine mammal clade, the Pinnipedimorpha, which includes the extinct Desmatophocidae, and extant Phocidae (earless seals), Otariidae (fur seals and sea lions), and Odobenidae (walruses). We tested for the presence of Cope's rule by compiling a large dataset of body size data for extant and fossil pinnipeds and then examined how body size evolved through time. We found that there was a positive relationship between geologic age and body size. However, this trend is the result of differences between early assemblages of small-bodied pinnipeds (Oligocene to early Miocene) and later assemblages (middle Miocene to Pliocene) for which species exhibited greater size diversity. No significant differences were found between the number of increases or decreases in body size within Pinnipedimorpha or within specific pinniped clades. This suggests that the pinniped body size increase was driven by passive diversification into vacant niche space, with the common ancestor of Pinnipedimorpha occurring near the minimum adult body size possible for a marine mammal. Based upon the above results, the evolutionary history of pinnipeds does not follow Cope's rule.  相似文献   

9.
Swimming modes are crucial for understanding evolutionary transitions from land to sea, because locomotion affects many aspects of an animal’s life. The modern pinniped families Otariidae (fur seals and sea lions), Phocidae (true seals), and Odobenidae (walruses) are thought to share a common origin, but each differs in its primary mode of aquatic locomotion. Previous studies of locomotor evolution in pinnipeds suggested: (1) forelimb swimming was ancestral; (2) hind limb swimming evolved once at the base of the clade including Phocidae, Odobenidae, and the extinct Desmatophocidae; and (3) reversal to forelimb swimming occurred in the odobenid subfamily Dusignathinae. The oldest and most basal pinnipedimorph Enaliarctos mealsi has been portrayed as a forelimb swimmer, and the desmatophocid Allodesmus kelloggi has been portrayed as a hind limb swimmer. These interpretations have been questioned by others and are tested here. Principal components analysis of trunk and limb measurements from 58 modern semiaquatic mammals demonstrates that Enaliarctos is most similar in skeletal proportions to hind limb-dominated swimmers, whereas Allodesmus is most similar to forelimb-dominated swimmers. Principal components and discriminant function analyses of trunk and limb measurements from 24 modern pinniped species demonstrate that Enaliarctos is most similar to hind limb-swimming phocids, while Allodesmus is most similar to forelimb-swimming otariids. These interpretations complicate previous portrayals of swimming evolution in pinnipeds and can paint a very different picture of how this behavior evolved when viewed in the context of alternative phylogenetic hypotheses.  相似文献   

10.
Phylogenetic analysis of conservative nucleotide substitutions in 18 complete sequences of the mitochondrial cytochrome gene of Phocidae (true seals), Odobenidae (walruses), and Otariidae (sea lions and fur seals), plus three ursid and three felid sequences, identified the pinnipeds as monophyletic with Otariidae and Odobenidae on a common evolutionary branch. Analysis of total nucleotide differences separated the evolutionary lineages of northern and southern phocids. Both lineages are distinct from the most ancestral phocid genus, Monachus (monk seals), represented by the Hawaiian monk seal. The inclusion of the Hawaiian monk seal in the subfamily Monachinae makes the subfamily paraphyletic. Among the northern phocids, the hooded seal (genus Cystophora, chromosome number 2n = 34) is sister taxon to the Phoca complex. The Phoca complex, which is characterized by the chromosome number 2n = 32, includes genus Phoca and the monotypic genus Halichoerus (grey seal). The comparison does not support a generic distinction of Halichoerus within the Phoca complex. The present data suggest that Cystophora and Phoca separated 6 million years ago. Among the southern phocids the close molecular relationship of the Weddell and leopard seals relative to their morphological distinction exemplifies rapid adaptation to different ecological niches. This result stands in contrast to the limited morphological differentiation relative to the pronounced molecular distinctions that may occur within the Phoca complex.Correspondence to: Ú. Árnason  相似文献   

11.
12.
California sea lions (Zalophus californianus) and northern fur seals (Callorhinus ursinus) are each believed to host distinct hookworm species (Uncinaria spp.). However, a recent morphometric analysis suggested that a single species parasitizes multiple pinniped hosts, and that the observed differences are host-induced. To explore the systematics of these hookworms and test these competing hypotheses, we obtained nucleotide sequences of nuclear ribosomal DNA (D2/D3 28S, D18/D19 28S, and internal transcribed spacer [ITS] regions) from 20 individual hookworms parasitizing California sea lion and northern fur seal pups where their breeding grounds are sympatric. Five individuals from an allopatric population of California sea lions were also sampled for ITS-1 and D18/D19 28S sequences. The 28S D2/D3 sequences showed no diagnostic differences among hookworms sampled from individual sea lions and fur seals, whereas the 28S D18/D19 sequences had one derived (apomorphic) character demarcating hookworms from northern fur seals. ITS sequences were variable for 7 characters, with 4 derived (apomorphic) states in ITS-1 demarcating hookworms from California sea lions. Multivariate analysis of morphometric data also revealed significant differences between nematodes representing these 2 host-associated lineages. These results indicate that these hookworms represent 2 species that are not distributed indiscriminately between these host species, but instead exhibit host fidelity, evolving independently with each respective host species. This evolutionary approach to analyzing sequence data for species delimitation is contrasted with similarity-based methods that have been applied to numerous diagnostic studies of nematode parasites.  相似文献   

13.
Considerable long-standing controversy and confusion surround the phylogenetic affinities of pinnipeds, the largely marine group of "fin-footed" members of the placental mammalian order Carnivora. Until most recently, the two major competing hypotheses were that the pinnipeds have a single (monophyletic) origin from a bear-like ancestor, or that they have a dual (diphyletic) origin, with sea lions (Otariidae) derived from a bear-like ancestor, and seals (Phocidae) derived from an otter-, mustelid-, or musteloid-like ancestor. We examined phylogenetic relationships among 29 species of arctoid carnivorans using a concatenated sequence of 3228 bp from three nuclear loci (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). The species represented Pinnipedia (Otariidae: Callorhinus, Eumetopias; Phocidae: Phoca), bears (Ursidae: Ursus, Melursus), and Musteloidea (Mustelidae: Mustela, Enhydra, Melogale, Martes, Gulo, Meles; Procyonidae: Procyon; Ailuridae: Ailurus; Mephitidae: Mephitis). Maximum parsimony, maximum likelihood, and Bayesian inference phylogenetic analyses of separate and combined datasets produced trees with largely congruent topologies. The analyses of the combined dataset resulted in well-resolved and well-supported phylogeny reconstructions. Evidence from nuclear DNA evolution presented here contradicts the two major hypotheses of pinniped relationships and strongly suggests a single origin of the pinnipeds from an arctoid ancestor shared with Musteloidea to the exclusion of Ursidae.  相似文献   

14.
Phylogenetic relationships within the family Otariidae were investigated using two regions of the mitochondrial genome. A 360-bp region of the cytochrome b gene was employed for the primary phylogenetic analysis, while a 356-bp segment of the control region was used to enhance resolution of the terminal nodes. Traditional classification of the family into the subfamilies Arctocephalinae (fur seals) and Otariinae (sea lions) is not supported, with the fur seal Callorhinus ursinus having a basal relationship relative to the rest of the family. This is consistent with the fossil record which suggests that this genus diverged from the line leading to the remaining fur seals and sea lions about 6 million years ago (mya). There is also little evidence to support or refute the monophyly of sea lions. Four sea lion clades and five fur seal clades were observed, but relationships among these clades are unclear. Similar genetic divergences between the sea lion clades (D(a) = 0.054-0.078), as well as between the major Arctocephalus fur seal clades (D(a) = 0.040-0.069) suggest that these groups underwent periods of rapid radiation at about the time they diverged from each other. Rapid radiations of this type make the resolution of relationships between the resulting species difficult and indicate the requirement for additional molecular data from both nuclear and mitochondrial genes. The phylogenetic relationships within the family and the genetic distances among some taxa highlight inconsistencies in the current taxonomic classification of the family.  相似文献   

15.
Several behavioral and physiological adaptations have been developed in evolution of Pinnipeds allowing them to sleep both on land and in water. To date sleep has been examined in detail in eared and true seals (the families of Otariidae and Phocidae). The aim of this study was to examine sleep in another semiaquatic mammal — the walrus, which is the only extant representative of the family Odobenidae. Slow wave and paradoxical sleep (SWS and PS) in the examined walrus (2 year old female, weight 130 kg) averaged 19.4 ± 2.0 and 6.9 ± 1.1% of 24-h when on land, and 20.5 ± 0.8% of 24-h and 1.1 ± 0.6% when in water, respectively. The average duration of PS episode was 6.4 ± 0.6 min (maximum 23 min) when on land and 1.8 ± 0.1 min (maximum 3.3 min) when in water. In water, sleep occurred predominantly while the walrus submerged and lay on the bottom of the pool (89% of total sleep time). The walrus usually woke up while emerging to the surface for breathing. Most often EEG slow waves developed synchronously in both cortical hemispheres (90% of SWS time when on land and 97% when in water). Short episodes of interhemispheric EEG asymmetry usually coincided with brief opening of one eye. The pattern of sleep in the walrus was similar to the pattern of sleep in the Otariidae seals while on land (predominantly bilateral SWS, accompanied by regular breathing) and to the pattern of sleep in the Phocidae while in water (sleep during apneas both in depth and at the surface, interrupted by brief arousal when emerging for breathing).  相似文献   

16.
We describe a method to determine the species of pinniped from faeces collected from sympatric Steller sea lion (Eumetopias jubatus) and northern fur seal (Callorhinus ursinus) rookeries using newly developed species-specific primers that amplify a 667-669-base pair segment from the mitochondrial DNA (mtDNA) cytochrome B (cytB) gene region. The primers yielded the correct species in 100% of tissue samples from 10 known animals and 100% of faecal samples from 13 known animals. Species could be identified unequivocally for 87.7% of faecal samples from 122 unknown individuals. The ability to differentiate between scats of sympatrically breeding Steller sea lions and northern fur seals will contribute to the range-wide knowledge of the foraging strategies of both species as well as allow researchers to examine the niche partitioning and potential resource competition between the two predators.  相似文献   

17.
Pinnipeds (Otariidae, Odobenidae, and Phocidae) in the order Carnivora have one or two types (Hb I and Hb II) of hemoglobin components. These hemoglobins consist of identicalβ chains and differentα chains. We determined the complete amino acid sequences of the hemoglobinβ chain of three species of Otariidae (Australian sea lion, South American sea lion, and northern sea lion) and two species of Phocidae (ringed seal and harp seal) from intactβ chain and chemical cleavage fragments. The sequences are similar toβ chains of the already known sequences of pinnipeds. These sequences were compared with those of other carnivores (Mustelidae, Ursidae, Canidae, and Felidae) and adult human hemoglobinβ chain. Using Artiodactyla (pig) as an outgroup, we find that the tree constructed by means of phylogenetic analysis shows that Odobenidae is closest to Otariidae, and that Otariidae and Odobenidae are closer to Mustelidae than to Phocidae.  相似文献   

18.
Neutralizing antibodies to Tillamook calicivirus (TCV) were found in sera collected from California sea lions (Zalophus c. californianus Lesson) in 1983 and 1984 and in sera collected from Steller sea lions (Eumetopias jubatus Schreber) in 1976 and 1985. The combined prevalence of antibodies for these two species was 10/228 = 4.38%. Titers ranged from 1:20 (five animals), to 1:40 (four animals), to 1:80 (one animal) by standard microtiter neutralization assay. The seropositive pinnipeds were dispersed widely along the margins of the eastern Pacific rim, from the Bering Sea to the Santa Barbara Channel. Antibodies to TCV were not found in sera collected from northern fur seals (Callorhinus ursinus L.), Pacific walruses (Odobenus rosmarus divergens Illiger), seals of the family Phocidae, or several cetacean species. Tillamook calicivirus was isolated originally in 1981 from dairy calves in Oregon; the finding of neutralizing antibodies in two widely distributed species of sea lions suggests the possibility of a marine origin for this agent.  相似文献   

19.
Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair.  相似文献   

20.
  • 1 Pinnipeds are charismatic but difficult to study, and taxonomy is poorly understood. An accurate taxonomic framework is essential for studies of biogeography, ecology and conservation.
  • 2 Morphologic and genetic criteria used to recognize pinniped species and subspecies are evaluated individually for all taxa in the three families: Otariidae (sea lions and fur seals), Odobenidae (walruses) and Phocidae (seals). We advocate a pragmatic approach that, in general, follows the Evolutionary Species Concept and ‘diagnosability’ criterion for subspecies delimitations.
  • 3 Of the 33 species, all have at least two lines of evidence to distinguish them, and of the 29 subspecies, 24 have at least one line of evidence, but five have inadequate support. We present a composite phylogeny for pinnipeds.
  • 4 We propose that the genus Arctocephalus be limited to Arctocephalus pusillus, and we resurrect the name Arctophoca for at least six species and subspecies.
  • 5 We recommend large sample sizes and broad, random sampling in further research on pinniped taxonomy. Taxa should be described based on robust statistical analysis, not by arbitrary division of characters, and molecular research should include analysis of mtDNA and nuDNA.
  • 6 Finally, we offer suggestions for further taxonomic research (on hybridization in otariids, and to allow consideration of life history data in sampling) in an effort to improve our understanding of pinniped diversity. Even for taxa which are already protected, better understanding of their taxonomy can only enhance their conservation status and facilitate efforts to protect their habitats.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号