首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Babynin EV 《Genetika》2004,40(5):581-591
Stability of genomes of living organisms is maintained by various mechanisms that ensure high fidelity of DNA replication. However, cells can reversibly enhance the level of replication errors in response to external factors. As mutable states are potentially involved in carcinogenesis, aging, and resistance for pathogenic agents, the existence of these states is of great importance for human health. A well-known system of inducible mutation is SOS response, whose key component is replication of damaged DNA regions. Inducible mutation implies a contribution of SOS response to the adaptation of a bacterial population to adverse environments. There is ample evidence indicating the primary role of SOS response genes in the phenomenon of adaptive mutation. The involvement of the SOS system in adaptive mutagenesis is discussed.  相似文献   

2.
Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficient TSL takes place. The aim of this work was to estimate the involvement of SOS-inducible DNA polymerases, Pol II, Pol IV and Pol V, in UV mutagenesis and in mutation frequency decline (MFD), a mechanism of repair of UV-induced damage to DNA under conditions of arrested protein synthesis. Using the argE3-->Arg(+) reversion to prototrophy system in E. coli AB1157, we found that the umuDC-encoded Pol V is the only SOS-inducible polymerase required for UV mutagenesis, since in its absence the level of Arg(+) revertants is extremely low and independent of Pol II and/or Pol IV. The low level of UV-induced Arg(+) revertants observed in the AB1157mutD5DumuDC strain indicates that under conditions of disturbed proofreading activity of Pol III and lack of Pol V, UV-induced lesions are bypassed without inducing mutations. The presented results also indicate that Pol V may provide substrates for MFD repair; moreover, we suggest that only those DNA lesions which result from umuDC-directed UV mutagenesis are subject to MFD repair.  相似文献   

3.
DNA replication is frequently hindered because of the presence of DNA lesions induced by endogenous and exogenous genotoxic agents. To circumvent the replication block, cells are endowed with multiple specialized DNA polymerases that can bypass a variety of DNA damage. To better understand the specificity of specialized DNA polymerases to bypass lesions, we have constructed a set of derivatives of Salmonella typhimurium TA1538 harboring plasmids carrying the polB, dinB or mucAB genes encoding Escherichia coli DNA polymerase II, DNA polymerase IV or DNA polymerase RI, respectively, and examined the mutability to 30 chemicals. The parent strain TA1538 possesses CGCGCGCG hotspot sequence for -2 frameshift. Interestingly, the chemicals could be classified into four groups based on the mutagenicity to the derivatives: group I whose mutagenicity was highest in strain YG5161 harboring plasmid carrying dinB; group II whose mutagenicity was almost equally high in strain YG5161 and strain TA98 harboring plasmid carrying mucAB; group III whose mutagenicity was highest in strain TA98; group IV whose mutagenicity was not affected by the introduction of any of the plasmids. Introduction of plasmid carrying polB did not enhance the mutagenicity except for benz[a]anthracene. We also introduced a plasmid carrying polA encoding E. coli DNA polymerase I to strain TA1538. Strikingly, the introduction of the plasmid reduced the mutagenicity of chemicals belonging to groups I, II and III, but not the chemicals of group IV, to the levels observed in the derivative whose SOS-inducible DNA polymerases were all deleted. These results suggest that (i) DNA polymerase IV and DNA polymerase RI possess distinct but partly overlapping specificity to bypass lesions leading to -2 frameshift, (ii) the replicative DNA polymerase, i.e., DNA polymerase III, participates in the mutagenesis and (iii) the enhanced expression of E. coli polA may suppress the access of Y-family DNA polymerases to the replication complex.  相似文献   

4.
The biochemistry and genetics of translesion synthesis (TLS) and, as a consequence, of mutagenesis has recently received much attention in view of the discovery of novel DNA polymerases, most of which belong to the Y family. These distributive and low fidelity enzymes assist the progression of the high fidelity replication complex in the bypass of DNA lesions that normally hinder its progression. The present paper extends our previous observation that in Escherichia coli all three SOS-inducible DNA polymerases (Pol II, IV and V) are involved in TLS and mutagenesis. The genetic control of frameshift mutation pathways induced by N-2-acetylaminofluorene (AAF) adducts or by oxidative lesions induced by methylene blue and visible light is investigated. The data show various examples of mutation pathways with an absolute requirement for a specific combination of DNA polymerases and, in contrast, other examples where two DNA polymerases exhibit functional redundancy within the same pathway. We suggest that cells respond to the challenge of replicating DNA templates potentially containing a large diversity of DNA lesions by using a pool of accessory DNA polymerases with relaxed specificities that assist the high fidelity replicase.  相似文献   

5.
The dnaN159 allele encodes a temperature-sensitive mutant form of the β sliding clamp (β159). SOS-induced levels of DNA polymerase IV (Pol IV) confer UV sensitivity upon the dnaN159 strain, while levels of Pol IV ~4-fold higher than those induced by the SOS response severely impede its growth. Here, we used mutations in Pol IV that disrupted specific interactions with the β clamp to test our hypothesis that these phenotypes were the result of Pol IV gaining inappropriate access to the replication fork via a Pol III*-Pol IV switch relying on both the rim and cleft of the clamp. Our results clearly demonstrate that Pol IV relied on both the clamp rim and cleft interactions for these phenotypes. In contrast to the case for Pol IV, elevated levels of the other Pols, including Pol II, which was expressed at levels ~8-fold higher than the normal SOS-induced levels, failed to impede growth of the dnaN159 strain. These findings suggest that the mechanism used by Pol IV to switch with Pol III* is distinct from those used by the other Pols. Results of experiments utilizing purified components to reconstitute the Pol III*-Pol II switch in vitro indicated that Pol II switched equally well with both a stalled and an actively replicating Pol III* in a manner that was independent of the rim contact required by Pol IV. These results provide compelling support for the Pol III*-Pol IV two-step switch model and demonstrate important mechanistic differences in how Pol IV and Pol II switch with Pol III*.  相似文献   

6.
Kokubo K  Yamada M  Kanke Y  Nohmi T 《DNA Repair》2005,4(10):1160-1171
Progression of DNA replication is occasionally blocked by endogenous and exogenous DNA damage. To circumvent the stalling of DNA replication, cells possess a variety of specialized DNA polymerases that replicate through DNA damage. Salmonella typhimurium strain TA1538 has six DNA polymerases and four of them are encoded by damage-inducible SOS genes, i.e. polB(ST) (pol II), dinB(ST) (pol IV), umuDC(ST) (pol V) and samAB. The strain has been used for the detection of a variety of chemical mutagens because of the high sensitivity to -2 frameshift occurring in CGCGCGCG sequence. To assign the role of each DNA polymerase in the frameshift mutagenesis, we have constructed the derivatives lacking one or all of SOS-inducible DNA polymerases and examined the mutability to 26 chemical mutagens. Interestingly, the chemicals could be categorized into four classes: class I whose mutagenicity was reduced by the deletion of dinB(ST) (1-aminoanthracene and other four chemicals); class II whose mutagenicity was reduced by the deletion of either dinB(ST) or umuDC(ST) plus samAB (7,12-dimethylbenz[a]anthracene and other three chemicals); class III whose mutagenicity largely depended on the presence of umuDC(ST) plus samAB (1-N-6-azabenzo[a]pyrene and other three chemicals) and class IV whose mutagenicity was not reduced by deletion of any of the genes encoding SOS-inducible DNA polymerases (Glu-P-1 and other 12 chemicals). Deletion of polB(ST) reduced by 30-60% the mutagenicity of six chemicals of classes II and III. These results suggest that multiple DNA polymerases including the replicative DNA polymerase, i.e. DNA polymerase III holoenzyme, play important roles in chemically induced -2 frameshift and also that different sets of DNA polymerases are engaged in the translesion bypass of different DNA lesions.  相似文献   

7.
8.
DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N(2)-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ), a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site "aromatic triad", namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS). Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent.  相似文献   

9.
In Escherichia coli, the dinB gene is required for the SOS-induced lambda untargeted mutagenesis pathway and confers a mutator phenotype to the cell when the gene product is overexpressed. Here, we report that the purified DinB protein is a DNA polymerase. This novel E. coli DNA polymerase (pol IV) is shown to be strictly distributive, devoid of proofreading activity, and prone to elongate bulged (misaligned) primer/template structures. Site-directed mutagenesis experiments of dinB also demonstrate that the polymerase activity of DinB is required for its in vivo mutagenicity. Along with the sequence homologies previously found within the UmuC-like protein family, these results indicate that the uncovered DNA polymerase activity may be a common feature of all these homologous proteins.  相似文献   

10.
E Holler  R Bauer    F Bernges 《Nucleic acids research》1992,20(9):2307-2312
The question of whether monofunctional DNA platinum(II) adducts block synthesis of DNA by purified DNA polymerases of different types and origin has been investigated by comparing the time dependence of synthesis arrest and of DNA adduct formation. Activated salmon testis DNA is used as a suitable substrate for DNA synthesis allowing to probe inhibition by platinum(II) monoadducts for the variety of inherent template-primers. Reaction amplitudes are related to defined mixtures of dichloro and chloroaqua platinum(II) complexes. It is found that (i) all investigated DNA polymerases seem arrested (100% efficiency) at bifunctional DNA adducts. (ii) human DNA polymerase beta bypasses most of the monofunctional lesions of the three platinum(II) complexes investigated. (iii) Klenow fragment is blocked by monoadducts with increasing efficiency in the order cis-diamminechloroaquaplatinum(II) (0%) less than meso-[1,2-bis(2,6- dichloro-4-hydroxyphenyl)ethylenediamine] chloroaquaplatinum(II) (50%) less than trans-diamminechloro-aquaplatinum(II) (75%). (iv) Escherichia coli DNA polymerase I, Thermus aquaticus DNA polymerase, Physarum polycephalum DNA polymerase alpha, and calf thymus DNA polymerase alpha appear to be arrested by monoadducts. According to these examples, blocking efficiencies depend on the cis/trans-stereogeometry of fixation of the carrier ligands at platinum(II) residues, on the size/chemical nature of the platin(II) carrier ligand and on the type/origin of DNA polymerase.  相似文献   

11.
12.
DNA replication machineries tend to stall when confronted with damaged DNA template sites, causing the biochemical equivalent of a major 'train wreck'. A newly discovered bacterial DNA polymerase, Escherichia coli Pol V, acting in conjunction with the RecA protein, can exchange places with the stalled replicative Pol III core and catalyse 'error-prone' translesion synthesis. In contrast to Pol V-catalysed 'brute-force, sloppier copying', another SOS-induced DNA polymerase, Pol II, plays a pivotal role in an 'error-free', replication-restart DNA repair pathway and probably involves RecA-mediated homologous recombination.  相似文献   

13.
14.
Silverman AP  Jiang Q  Goodman MF  Kool ET 《Biochemistry》2007,46(48):13874-13881
The SOS-induced DNA polymerases II and IV (pol II and pol IV, respectively) of Escherichia coli play important roles in processing lesions that occur in genomic DNA. Here we study how electrostatic and steric effects play different roles in influencing the efficiency and fidelity of DNA synthesis by these two enzymes. These effects were probed by the use of nonpolar shape analogues of thymidine, in which substituted toluenes replace the polar thymine base. We compared thymine with nonpolar analogues to evaluate the importance of hydrogen bonding in the polymerase active sites, while we used comparisons among a set of variably sized thymine analogues to measure the role of steric effects in the two enzymes. Steady-state kinetics measurements were carried out to evaluate activities for nucleotide insertion and extension. The results showed that both enzymes inserted nucleotides opposite nonpolar template bases with moderate to low efficiency, suggesting that both polymerases benefit from hydrogen bonding or other electrostatic effects involving the template base. Surprisingly, however, pol II inserted nonpolar nucleotide (dNTP) analogues into a primer strand with high (wild-type) efficiency, while pol IV handled them with an extremely low efficiency. Base pair extension studies showed that both enzymes bypass non-hydrogen-bonding template bases with moderately low efficiency, suggesting a possible beneficial role of minor groove hydrogen bonding interactions at the N-1 position. Measurement of the two polymerases' sensitivity to steric size changes showed that both enzymes were relatively flexible, yielding only small kinetic differences with increases or decreases in nucleotide size. Comparisons are made to recent data for DNA pol I (Klenow fragment), the archaeal polymerase Dpo4, and human pol kappa.  相似文献   

15.
Raychaudhury P  Basu AK 《Biochemistry》2011,50(12):2330-2338
γ-Radiation generates a variety of complex lesions in DNA, including the G[8,5-Me]T intrastrand cross-link in which C8 of guanine is covalently linked to the 5-methyl group of the 3'-thymine. We have investigated the toxicity and mutagenesis of this lesion by replicating a G[8,5-Me]T-modified plasmid in Escherichia coli with specific DNA polymerase knockouts. Viability was very low in a strain lacking pol II, pol IV, and pol V, the three SOS-inducible DNA polymerases, indicating that translesion synthesis is conducted primarily by these DNA polymerases. In the single-polymerase knockout strains, viability was the lowest in a pol V-deficient strain, which suggests that pol V is most efficient in bypassing this lesion. Most mutations were single-base substitutions or deletions, though a small population of mutants carrying two point mutations at or near the G[8,5-Me]T cross-link was also detected. Mutations in the progeny occurred at the cross-linked bases as well as at bases near the lesion site, but the mutational spectrum varied on the basis of the identity of the DNA polymerase that was knocked out. Mutation frequency was the lowest in a strain that lacked the three SOS DNA polymerases. We determined that pol V is required for most targeted G → T transversions, whereas pol IV is required for the targeted T deletions. Our results suggest that pol V and pol IV compete to carry out error-prone bypass of the G[8,5-Me]T cross-link.  相似文献   

16.
17.
A number of error-prone DNA polymerases have been found in various eukaryotes, ranging from yeasts to mammals, including humans. According to partial homology of the primary structure, they are grouped into families B, X, and Y. These enzymes display a high infidelity on an intact DNA template, but they are accurate on a damaged template. Error-prone DNA polymerases are characterized by probabilities of base substitution or frameshift mutations ranging from 10?3 to 7.5 · 10?1 in an intact DNA, whereas the spontaneous mutagenesis rate per replicated nucleotide varies between 10?10 and 10?12. Low-fidelity polymerases are terminal deoxynucleotidyl transferase (TdT) and DNA polymerases β, ζ, κ, η, ι, λ, μ, and Rev1. The main characteristics of these enzymes are reviewed. None of them exhibits proofreading 3′ → 5′ exonuclease (PE) activity. The specialization of these polymerases consists in their capacity for synthesizing opposite DNA lesions (not eliminated by the numerous repair systems), which is explained by the flexibility of their active centers or a limited ability to express TdT activity. Classic DNA polymerases α, δ, ε, and γ cannot elongate primers with mismatched nucleotides at the 3′-end (which leads to replication block), whereas some specialized polymerases can catalyze this elongation. This is accompanied by overcoming the replication block, often at the expense of an increased mutagenesis rate. How can a cell exist under the conditions of this high infidelity of many DNA polymerase activities? Not all tissues of the body contain a complete set of low-fidelity DNA polymerases, although some of these enzymes are vitally important. In addition, cells “should not allow” error-prone DNA polymerases to work on undamaged DNA. After a lesion on the DNA template is bypassed, the cell should switch over from DNA synthesis catalyzed by specialized polymerases to the synthesis catalyzed by relatively high-fidelity DNA polymerases δ and ? (with an error frequency of 10?5 to 10?6) as soon as possible. This is done by forming complexes of polymerase δ or ? with proliferating cell nuclear antigen (PCNA) and replication factors RP-A and RF-C. These highly processive complexes show a greater affinity to correct primers than specialized DNA polymerases do. The fact that specialized DNA polymerases are distributive or weakly processive favors the switching. The fidelity of these polymerases is increased by the PE function of DNA polymerases δ and ε, as well as autonomous 3′ → 5′ exonucleases, which are widespread over the entire phylogenetic tree of eukaryotes. The exonuclease correction decelerates replication in the presence of lesions in the DNA template but increases its fidelity, which decreases the probability of mutagenesis and carcinogenesis.  相似文献   

18.
A number of error-prone DNA polymerases is found among eukaryotes from yeasts up to mammalia including humans. According to the partial homology of a primary structure, they are united in families B, X, Y and display high infidelity on uninjured DNA-template, whereas they are rather accurate on DNA injuries. These DNA polymerases are characterized by the probability of base substitutions or frame shifts of 10(-3) to 7.5 x 10(-1) on DNA injuries, whereas the probability of spontaneous mutagenesis per replicated nucleotide accounts 10(-10) - 10(-12). Inaccurate DNA polymerases are terminal deoxynucleotidyl transferase (TdT), DNA polymerases beta, zeta, kappa, eta, iota, lamda, mu, and Rev1. Their principal properties are described in this review. All of the polymerases under study are deprived of the corrective 3'-->5' exonucleolytic activity. The specialization of these polymerases is contained in the capability to synthesize opposite DNA lesions (not eliminated by multiple repair systems) that is explained by the flexibility of their active sites or by the limited capability to exhibit the TdT activity. Classic DNA polymerases alpha, delta, epsilon, and gamma cannot elongate the primers with mismatched nucleotides on their 3'-ends (that leads to the replication block), whereas some of the specialized polymerases can do it. It is accompanied by the overcoming of a replication block, often with the expense of an elevated mutagenesis. How can a cell live under the conditions of such a huge infidelity of many DNA polymerases? Error-prone DNA polymerases are not found in all tissues though some of them are essential for an organism survival. Furthermore, cells must not allow for these polymerases to work effectively on uninjured DNA. After bypass of a lesion on DNA-template, it is necessary, as soon as possible, to switch catalysis of the DNA synthesis from the specialized polymerases on the relatively accurate DNA polymerases delta and epsilon (fidelity of 10(-5) - 10(-6)). It is made by the formation of the complexes of polymerases delta or epsilon with PCNA and replicative factors RP-A and RF-C. Such highly processive complexes manifest the bigger affinity to the correct primers than the specialized DNA polymerases do. The switching is stimulated by distributivity or weak processivity of the specialized DNA polymerases. The accuracy of these polymerases are augmented by the action of the corrective 3'-exonucleolytic function of DNA polymerases delta and epsilon as well as by the autonomous 3'-->5' exonucleases which are widespread among the representatives of the whole phylogenetic tree. Exonucleolytic correction slows down the replication in the presence of lesions in DNA-template but makes the replication more accurate that decreases the probability of mutagenesis and carcinogenesis.  相似文献   

19.
Plants are unique among eukaryotes in having five multi-subunit nuclear RNA polymerases: the ubiquitous RNA polymerases I, II and III plus two plant-specific activities, nuclear RNA polymerases IV and V (previously known as Polymerases IVa and IVb). Pol IV and Pol V are not required for viability but play non-redundant roles in small interfering RNA (siRNA)-mediated pathways, including a pathway that silences retrotransposons and endogenous repeats via siRNA-directed DNA methylation. RNA polymerase activity has not been demonstrated for Polymerases IV or V in vitro, making it unclear whether they are catalytically active enzymes. Their largest and second-largest subunit sequences have diverged considerably from Pol I, II and III in the vicinity of the catalytic center, yet retain the invariant Metal A and Metal B amino acid motifs that bind magnesium ions essential for RNA polymerization. By using site-directed mutagenesis in conjunction with in vivo functional assays, we show that the Metal A and Metal B motifs of Polymerases IV and V are essential for siRNA production, siRNA-directed DNA methylation, retrotransposon silencing, and the punctate nuclear localization patterns typical of both polymerases. Collectively, these data show that the minimal core sequences of polymerase active sites, the Metal A and B sites, are essential for Pol IV and Pol V biological functions, implying that both are catalytically active.  相似文献   

20.
Besides the KU-dependent classical non-homologous end-joining (C-NHEJ) pathway, an alternative NHEJ pathway first identified in mammalian systems, which is often called the back-up NHEJ (B-NHEJ) pathway, was also found in plants. In mammalian systems PARP was found to be one of the essential components in B-NHEJ. Here we investigated whether PARP1 and PARP2 were also involved in B-NHEJ in Arabidopsis. To this end Arabidopsis parp1, parp2 and parp1parp2 (p1p2) mutants were isolated and functionally characterized. The p1p2 double mutant was crossed with the C-NHEJ ku80 mutant resulting in the parp1parp2ku80 (p1p2k80) triple mutant. As expected, because of their role in single strand break repair (SSBR) and base excision repair (BER), the p1p2 and p1p2k80 mutants were shown to be sensitive to treatment with the DNA damaging agent MMS. End-joining assays in cell-free leaf protein extracts of the different mutants using linear DNA substrates with different ends reflecting a variety of double strand breaks were performed. The results showed that compatible 5′-overhangs were accurately joined in all mutants, that KU80 protected the ends preventing the formation of large deletions and that PARP proteins were involved in microhomology mediated end joining (MMEJ), one of the characteristics of B-NHEJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号