首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R L Shew  R E Papka  D L McNeill 《Peptides》1992,13(2):273-279
Immunoreactivity to the neuropeptides galanin (GAL) and calcitonin gene-related peptide (CGRP) was examined in nerves in the rat uterus as a prelude to studying their effects on uterine contractility. With immunocytochemical techniques, GAL immunoreactivity (GAL-I) and CGRP-I were localized in myometrial nerves throughout the uterine horns and cervix, with nerves immunoreactive for CGRP being more numerous. Immunocytochemical double-labeling studies revealed GAL coexists with CGRP in a subpopulation of CGRP-I nerve fibers, i.e., GAL-I was not present in all CGRP-I nerves. Effects of these neuropeptides on uterine contractility were examined on in vitro preparations of uterine horns from diethylstilbestrol-treated rats. GAL (10(-5) to 10(-8) M) stimulated uterine contraction in a dose-related manner. CGRP had no effect on basal uterine tension, but CGRP (10(-7) M) reduced GAL-stimulated (10(-7) M) uterine contraction by 92.5%. These results demonstrate that GAL- and CGRP-I are present in, and coexist in, some uterine nerves, presumably afferent nerves. GAL and CGRP could be released from afferent fibers in an "efferent fashion" and influence uterine contractility, GAL having a contractile effect and CGRP having a relaxing effect.  相似文献   

2.
R L Shew  R E Papka  D L McNeill 《Peptides》1991,12(3):593-600
Immunoreactivity to the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) was examined in nerves in the rat uterus as a prelude to studying their effects on uterine contractility. With immunocytochemical techniques, SP immunoreactivity (SP-I) and CGRP-I were localized in myometrial nerves throughout the uterine horns, with nerves immunoreactive for CGRP being the more numerous. Immunocytochemical double labeling studies revealed SP coexisted with CGRP in a subpopulation of CGRP-I nerve fibers, i.e., SP-I was not present in all CGRP-I nerves. Effects of these neuropeptides on uterine contractility were examined on in vitro preparations of uterine horns from diethylstilbestrol-treated rats. SP (10(-4) to 10(-8) M) stimulated uterine contraction in a dose-related manner. CGRP(1-37) and CGRP(8-37) had no effect on basal uterine tension. While CGRP(1-37) (10(-7) M) reduced SP-stimulated (10(-5) M) uterine contraction by 56%, CGRP(8-37) had no effect on SP-stimulated uterine contraction. However, CGRP(8-37) (10(-6) M) significantly reduced the ability of CGRP(1-37) (10(-7) M) to inhibit SP-stimulated uterine contraction. These results demonstrate that SP- and CGRP-I are present in, and coexist in some uterine nerves, presumably afferent nerves. The first 7 amino acids are necessary for the inhibitory effect of CGRP(1-37) on stimulated uterine contraction. In addition, CGRP(8-37) acted as an antagonist to this inhibitory action. SP and CGRP could be coreleased from afferent fibers in an "efferent fashion" and influence uterine contractility. SP having a contractile effect and CGRP having a relaxing effect.  相似文献   

3.
Cryostat- and vibratome-cut rat kidney secretions were singly or doubly labeled to visualize immunoreactive calcitonin-gene-related peptide (CGRPI) and substance P (SPI). Rats were perfused with 2-4% paraformaldehyde + 0.15% picric acid then rinsed with buffer. Horseradish peroxidase (HRP) was used to visualize CGRP in vibratome sections, and combined HRP and fluorophore were used to visualize the two peptides simultaneously in cryostat sections. There is a complex, multilayered plexus of CGRP nerves on the renal pelvis and a less dense, single-layered plexus on the major branches of the renal artery and on interlobar arteries and veins. A few axons innervate finer branches of the arterial tree and other intrarenal structures. Results of double immunolabeling suggest that SPI axons comprise a subpopulation of the CGRP axon population in the rat kidney. There was no evidence for a separate population of SPI axons.  相似文献   

4.
5.
Calcitonin gene-related peptide (CGRP) relaxes vascular and intestinal smooth muscle. This study localized CGRP in the guinea pig gallbladder, examined the effects of CGRP on KCl- and ACh-induced contraction, and determined CGRPs site of action in the gallbladder. The gallbladder of male Hartley guinea pigs was used in in vitro tension studies, radioimmunoassay, or immunocytochemical studies. Radioimmunoassay showed that 8.0 +/- 0.5 pmol/g of immunoreactive CGRP was present. Immunocytochemistry demonstrated that immunoreactive-CGRP nerve fibers occurred around blood vessels, in gallbladder smooth muscle layers, and were associated with ganglia. No immunoreactive cell bodies were observed, even after colchicine treatment. The in vitro tension studies showed that CGRP inhibits either KCl- or acetylcholine-stimulated contraction. CGRP may in part act directly on the gallbladder smooth muscle to inhibit contraction.  相似文献   

6.
Calcitonin gene-related peptide and hypertension   总被引:7,自引:0,他引:7  
Deng PY  Li YJ 《Peptides》2005,26(9):1676-1685
Capsaicin-sensitive sensory nerves participate in the regulation of cardiovascular functions both in the normal state and the pathophysiology of hypertension through the actions of potent vasodilator neuropeptides, including calcitonin gene-related peptide (CGRP). CGRP, a very potent vasodilator, is the predominant neurotransmitter in capsaicin-sensitive sensory nerves, and plays an important role in the initiation, progression and maintenance of hypertension via: (1) the alterations in its synthesis and release and/or in vascular sensitivity response to it; (2) interactions with pro-hypertensive systems, including renin-angiotensin-aldosterone system, sympathetic nervous system and endothelin system; and (3) anti-hypertrophy and anti-proliferation of vascular smooth muscle cells. The decrease in CGRP synthesis and release contributes to the elevated blood pressure, as shown in the spontaneously hypertensive rats, alpha-CGRP knockout mice, Dahl-salt or phenol-induced hypertensive rats. In contrast, the increase in CGRP levels or the enhancement of vascular sensitivity response to CGRP plays a beneficial compensatory depressor role in the development of hypertension, as shown in deoxycorticosterone-salt, sub-total nephrectomy-salt, N(omega)-nitro-L-arginine methyl ester or two-kidney, one-clip models of hypertension in rats. We found that rutaecarpine causes a sustained depressor action by stimulation of CGRP synthesis and release via activation of vanilloid receptor subtype 1 (VR1) in hypertensive rats, which reveals the therapeutic implications of VR1 agonists for treatment of hypertension.  相似文献   

7.
Calcitonin gene-related peptide: novel neuropeptide   总被引:5,自引:0,他引:5  
E C Goodman  L L Iversen 《Life sciences》1986,38(24):2169-2178
Calcitonin gene-related peptide (CGRP) is a 37 amino acid peptide encoded in the calcitonin gene. Its expression is dependent on tissue-specific alternative RNA processing: mRNA for CGRP predominates in the brain, whilst calcitonin (CT) mRNA predominates in thyroid C cells. The existence of this hitherto unsuspected peptide was predicted by mRNA analysis and demonstrated using antibodies raised against a synthetic peptide corresponding to the predicted C-terminal sequence of CGRP. The distribution of CGRP in the central and peripheral nervous system and its co-localization in some neurons with substance P (SP) or acetylcholine suggests several possible roles in autonomic, sensory and motor functions. Its actions appear to depend on the existence of specific CGRP receptors in target tissues, distinct from the receptors for CT but bearing some resemblance to them.  相似文献   

8.
The influence of rat calcitonin gene-related peptide (rCGRP) on the secretion of gastric somatostatin and gastrin was studied in vitro using the isolated, vascularly perfused rat stomach preparation. rCGRP stimulated somatostatin secretion dose-dependently reaching 3-fold stimulation at 1 microM. The kinetics of somatostatin response were characterized by a sharp increase in the initial phase of rCGRP perfusion followed by sustained elevated levels. Gastrin secretion was moderately suppressed at 1 nM to 100 nM CGRP. Somatostatin responses to half-maximal stimulation with 100 nM CGRP were not affected by concomitant perfusion of atropine, propranolol, and tetrodotoxin. It is concluded that increases in somatostatin release in response to CGRP are probably due to a direct effect on the gastric somatostatin-producing D-cell and may be important for the potent acid-inhibitory activity of CGRP.  相似文献   

9.
Calcitonin gene-related peptide (CGRP)-like immunoreactivity (LI) in the human hypothalamus was investigated by radioimmunoassay and by immunocytochemistry. CGRP-LI was detected from two hypothalami obtained at autopsy (2.1 and 7.0 ng/g wet tissue) by radioimmunoassay. Reverse phase high performance liquid chromatography revealed that most of the CGRP-LI in the human hypothalamus was eluted in an identical position with synthetic human CGRP. For immunocytochemistry, human hypothalami obtained at autopsy were fixed and cryostat-sectioned at 40 microns. Free floating sections were immunostained with antibody to CGRP. CGRP-immunoreactive cell bodies were found in the supraoptic nucleus, paraventricular nucleus and infundibular nucleus. These findings indicate that CGRP exists in the cell bodies of the supraoptic nucleus, paraventricular nucleus and infundibular nucleus in the human hypothalamus and CGRP may play some roles in the endocrine and other functions of the human hypothalamus.  相似文献   

10.
The distribution of perivascular nerve fibers displaying calcitonin gene-related peptide (CGRP) immunoreactivity and the effect of CGRP on vascular smooth muscle were studied in the guinea-pig. Perivascular CGRP fibers were seen in all vascular beds. Generally, they were more numerous around arteries than veins. Small arteries in the respiratory tract, gastrointestinal tract and genitourinary tract had numerous CGRP fibers. The gastroepiploic artery in particular received a rich supply of such fibers. Coronary blood vessels had a moderate supply of CGRP fibers. In the heart, a moderate number of CGRP fibers was seen running close to myocardial fibers. The atria had a richer supply than the ventricles. Numerous CGRP immunoreactive nerve cell bodies and nerve fibers were seen in sensory (trigeminal, jugular and spinal dorsal root) ganglia. Sequential or double immunostaining with antibodies against substance P and CGRP suggested co-existence of the two peptides in nerve cell bodies in the ganglia and in perivascular fibers. In agreement with previous findings CGRP turned out to be a strong vasodilator in vitro as tested on several blood vessels (e.g. basilar, gastroepiploic and mesenteric arteries). Conceivably, perivascular CGRP/SP fibers have a dual role as regulator of local blood flow and as carrier of sensory information.  相似文献   

11.
The distribution of calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibres in the palate of rat, cat and monkey was studied using immunocytochemistry and radioimmunoassay. CGRP-containing nerve fibres were found, in all species studied, to form a rich plexus in the subepithelial and submucous layers, around excretory ducts and blood vessels. A small number of CGRP-containing nerve fibres penetrated the epithelium of the hard and soft palate, and terminated as free endings. Some CGRP-containing nerve fibres were found in the vicinity of the mucous glands. CGRP-immunoreactive motor end plates were seen in the striated muscle (tensor veli palatini) of the soft palate. Following capsaicin treatment a small depletion in CGRP-immunoreactive nerve fibres in the rat palate epithelium was noted. In contrast, CGRP immunoreactive fibres forming rich plexuses in other layers of the palate, including motor end plates, were not affected. The extractable CGRP showed no significant depletion (normal animals [n = 10] 21.7 +/- 2.4 pmol/g compared with capsaicin-treated animals [n = 10] 17.5 +/- 1.8 pmol CGRP/g wet weight). The reduction in the number of visible immunoreactive nerves following capsaicin application tends to confirm the sensory character of the CGRP-containing nerve fibres terminating in the epithelium of the hard and soft palate. The capsaicin insensitive CGRP-immunoreactive nerve fibres may thus have a predominantly motor function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Calcitonin gene-related peptide (CGRP) in the female rat urogenital tract   总被引:1,自引:0,他引:1  
CGRP-immunoreactivity was found throughout the female rat urogenital tract by specific radioimmunoassay, and shown to be present in nerve fibres by immunocytochemistry. The highest concentrations of CGRP-like immunoreactivity were found in the urinary tract, with lower levels in regions of the genitalia. Chromatographic analysis of bladder and vaginal extracts on Sephadex G-50 columns and HPLC revealed at least three CGRP-immunoreactive peaks. The major peak emerged in the same position as synthetic rat CGRP. CGRP nerve fibres were associated mainly with blood vessels, non-vascular smooth muscle, squamous epithelium and uterine and cervical glands, and were particularly abundant in the ureter and bladder. CGRP-immunoreactivity was depleted by neonatal treatment with capsaicin and after surgical section of pelvic and/or hypogastric nerves. Immunocytochemistry demonstrated that depletion occurred predominantly in the mucosal layer of the urogenital tract. These findings indicate a sensory function for most of the CGRP-immunoreactive nerves in the rat urogenital tract.  相似文献   

13.
M J Twery  R L Moss 《Peptides》1985,6(3):373-378
Individual neurons in the hypothalamus, thalamus, cortex, and other forebrain areas of urethane-anesthetized, male rats were iontophoretically tested for their membrane sensitivity to salmon calcitonin (CT), human CT, and CT gene-related peptide (CGRP). Extracellular recording of unit activity revealed that depression of neuronal firing was the predominant effect of iontophoretically applied salmon CT (35 of 74 cells tested). Few neurons responded to salmon CT with an increase in firing rate (N = 3). When CGRP was iontophoretically applied a pattern of response resembling that of salmon CT was observed. CGRP was predominantly inhibitory and excited those neurons whose firing rate was increased by salmon CT. Inhibition was also the predominant effect of human CT. However, no neurons were excited by human CT. The results clearly demonstrate that a subpopulation of neurons with membrane sensitivity to salmon CT, human CT, and CGRP are present in the rat forebrain. This finding suggests that modulation of neuronal activity may underlie the behavioral and biochemical effects of these peptides when administered centrally. Endogenous CGRP and CT-like peptides in rat brain may be capable of regulating these events as neurotransmitters or neuromodulators.  相似文献   

14.
The calcitonin gene related peptide (CGRP) is widely distributed in the enteric nervous system and gut afferents. Its role in normal digestion and absorption is not characterised. This study is conducted to elucidate whether CGRP regulates amino acid absorption in the small intestine. In in vivo experiments using the single-pass perfusion technique, intravenous infusion of CGRP (250–750 pmol/kg-min) reduced alanine absorption by 35–40%. The effects were completely blocked by the antagonist hCGRP (8–37). Moreover, intravenous infusion of CGRP antagonist blocked the inhibitory effect of intraluminal capsaicin perfusion on alanine absorption. Similarly, intracerebral injection of CGRP decreased alanine absorption, an effect which was reduced by vagotomy. In vitro experiments using isolated jejunal strips showed that CGRP reduced alanine absorption in a dose-dependent manner. At 6 pM, CGRP decreased alanine absorption by 33%. Similarly, CGRP reduced the absorption of proline and taurine by 20 and 11.5%, respectively. Kinetic studies revealed that CGRP reduces alanine influx into intestinal epithelial cells by inhibiting the affinity of the carriers. It is demonstrated that CGRP is involved in the regulation of jejunal amino acid absorption through intrinsic (enteric) and extrinsic (central) neural mechanisms.  相似文献   

15.
16.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are potent vasorelaxant peptides. This study examined exercise-induced changes in CGRP and AM levels in 12 healthy sea level natives at sea level (SL) and subsequently after 24 h (HA1) and 5 days (HA5) in high altitude hypoxia (4559 m). Plasma values of CGRP, AM, calcitonin, noradrenaline, adrenaline, lactate and heart rate were measured at rest and during maximal exercise (W(max)). On each study day, the dopamine D(2)-receptor antagonist, domperidone (30 mg; n=6), or no medication (n=6) was given 1 h before exercise. W(max) at SL, HA1 and HA5 increased CGRP and AM along with heart rate, lactate and catecholamines, whereas, calcitonin remained unchanged. The maximal CGRP levels at W(max) were significantly decreased at HA1 (74.3+/-6.1 pmol/l; p=0.002) and HA5 (69.6+/-6.0 pmol/l; p<0.001) compared to maximal CGRP at SL (85.1+/-4.9 pmol/l). A similar pattern was observed for lactate and the relation between CGRP and lactate release showed a close linear correlation (r(2)=0.63, P<0.0001). Domperidone produced a marked increase in noradrenaline at W(max), but had no affect on CGRP or AM. In conclusion, CGRP release during hypoxic exercise does not respond to domperidone-induced changes in circulating levels of noradrenaline, rather the release may be directly related to the production of lactate.  相似文献   

17.
Calcitonin gene-related peptide and its receptor in the thymus   总被引:2,自引:0,他引:2  
Calcitonin gene-related peptide (CGRP), a 37-amino acid residue neuropeptide, was immunostained in rat thymus at two sites: a subpopulation of thymic epithelial cells, namely subcapsular/perivascular cells, were heavily stained besides some nerve fibers surrounding arteries and arterioles. The administration of nanomolar concentrations of rat -CGRP dose-dependently raised intracellular cyclic adenosine monophosphate (cAMP) levels in isolated rat thymocytes (half-maximum stimulation 1 nM) but not in cultured rat thymic epithelial cells. Peptides structurally related to CGRP (i.e., rat calcitonin or amylin) had no effect. CGRP(8–37), an N-terminally truncated form, acted as an antagonist. Peripheral blood lymphocytes did not respond to CGRP, suggesting that receptors are present only on a subpopulation of thymocytes but not on mature T cells. This was substantiated by visualization of CGRP receptors on single cells by use of CGRP-gold and -biotin conjugates of established biological activity: only a small proportion of isolated thymocytes was surface labeled. In situ, the CGRP conjugates labeled receptors on large thymocytes residing in the outer cortical region of rat thymus pseudolobules. Thus, immunoreactive CGRP is found in subcapsular/perivascular thymic epithelial cells and acts via specific CGRP receptors on thymocytes by raising their intracellular cAMP level. It is suggested that CGRP is a paracrine thymic mediator that might influence the differentiation, maturation, and proliferation of thymocytes.  相似文献   

18.
Calcitonin gene-related peptide in human obesity.   总被引:1,自引:0,他引:1  
We studied plasma calcitonin gene-related peptide (CGRP) levels in obese women before (n = 24) and after (n = 13) weight loss, and in normal weight controls (n = 15). Furthermore, the influence of two isocaloric meals (high carbohydrate vs. high fat) on plasma CGRP concentrations was studied. The CGRP concentration in the obese group (32.26 +/- 2.01 pg/ml) was significantly (p less than 0.0001) higher than in the control group (21.64 +/- 0.15 pg/ml). After weight loss (14.3 +/- 0.72% of original weight) CGRP concentrations remained unchanged. Only the high-fat meal caused a significant (p less than 0.02) rise in CGRP levels. Our results indicate that elevated plasma CGRP levels may constitute a primary phenomenon in obese women, and that fat intake may be associated with increased CGRP secretion.  相似文献   

19.
20.
We examined the effect of adjuvant arthritis on the content of immunoreactive calcitonin gene-related peptide (iCGRP) in the dorsal root ganglia at L4-L6 levels and the spinal cord at a lumbar level in rats. Arthritis was induced by inoculating adjuvant into both hind-paws twice at a 10 day interval. In the arthritic rats 15 days after the first inoculation (day 15), the content of iCGRP was significantly increased in the dorsal root ganglia, with no change in the dorsal and ventral horns. The content in the dorsal root ganglia was still high on day 26 and had decreased by day 40. An intrathecal injection of colchicine (0.2 mg, 18 hr before killing) enhanced the increase of iCGRP in the dorsal root ganglia and decreased it in the dorsal horn of arthritic rats, although in noninoculated rats such treatment produced no significant changes in the content of iCGRP in both regions. The arthritis-induced increase in the content of iCGRP in the dorsal root ganglia was significantly reduced after treatment with the antiinflammatory analgesic, diclofenac sodium, in a dose of 3 mg/kg/day, PO for 10 days. Swelling and hyperalgesia in the hind-paw were depressed after such treatment. These results suggest that adjuvant arthritis with long-lasting inflammation with pain facilitates the turnover, especially biosynthesis, of CGRP in primary afferent neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号