首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of dodecylsulphate/polyacrylamide gel electrophoresis and fluorography has been used to quantify the synthesis of type I and type III collagens by periodontal ligament in situ and periodontal-ligament fibroblasts in vitro. The separation of 14C-labelled collagen alpha chains was achieved by introducing an interrupted reduction step, and the total radioactivity in the alpha-chain bands related to the fluorographic response by a series of standard curves. From these curves an accurate assessment of the relative amounts of type I and III collagen synthesized could be made. The same system also allowed the synthesis and processing of the respective procollagens to be analyzed. For the study in vivo, 200-g male rats were injected with 2 mCi [14C]glycine and killed 0.5-6 h later. Periodontal ligament was dissected from the mandibular molars and the newly-synthesized collagens extracted with 0.45 M sodium chloride. In the study in vitro, confluent monkey periodontal-ligament fibroblasts were cultured in the presence of [14C]proline and [14C]glycine. Analysis of labelled collagens showed a rapid conversion of type I procollagen to collagen but type III collagen was recovered as a procollagen intermediate both in vitro and in vivo. Analysis of duplicate samples after pepsin digestion showed type III collagen synthesis to comprise 15% of the total collagen synthesized in vivo and 20% in early subcultures in vitro. However, the proportion of type III synthesized by the fibroblasts decreased on subculturing. The data demonstrate that fibroblasts in vitro retain the basic characteristics of collagen synthesis and procollagen processing found in vivo, but the overall phenotypic expression of the cells is not stable in culture.  相似文献   

2.
3.
Collagen synthesis was monitored in cultures of rabbit arterial smooth muscle cells (SMC). Both the rate of collagen synthesis per cell and collagen synthesis as a percent of total protein synthesis were measured at specific intervals from 1 to 14 days after inoculation of smooth muscle cells. The proportions of types I and III collagen present in the conditioned incubation medium and in the cell layer were also examined. After inoculation the cells displayed population expansion typical of SMC in which growth slowed but did not cease after the cells attained confluence. Collagen synthesis rates, expressed as [14C]hydroxyproline per cell, were eight-fold higher in preconfluent cells. In these cultures collagen accounted for more than 20% of the newly synthesized, 14C-labeled protein present as trichloroacetic acid (TCA)-insoluble material in 24 h culture media. In post-confluent cultures, this percentage was reduced to about 7% of the total protein synthesized. Synthesis rates of both collagen and non-collagen protein decreased with increasing time after inoculation. However, the rate of decline of collagen synthesis was three times greater than that seen for non-collagen protein. Early cultures synthesized relatively more type I than type III procollagen. The type I to type III ratio was highest at day 3 and declined after that time to day 14. While the synthesis of both types decreased with increasing age, type I declined at a greater rate resulting in a predominance of type III procollagen secretion by older cultures. We conclude that protein synthesis in general and collagen synthesis in particular are quantitatively and qualitatively dependent upon the growth stage of SMC in vitro.  相似文献   

4.
Bleomycin is a chemotherapeutic agent sometimes associated with pulmonary fibrosis and skin lesions in patients undergoing treatment. We examined the mechanisms of increased collagen deposition on bleomycin-induced fibrosis by incubating human lung and skin fibroblast cultures with [14C]proline; the synthesis of [14C]hydroxyproline relative to DNA or cell protein was taken as an index of procollagen formation. Procollagen synthesis by lung cells in the presence of 0.1 and 1.0 microgram/ml bleomycin was significantly increased and similar results were obtained with skin fibroblasts. The relative synthesis of genetically distinct types of collagen was measured by isolating the newly synthesized type I and type III procollagens by DEAE-cellulose chromatography. The proportion of type III procollagen of total newly synthesized procollagen in control lung fibroblast cultures was 17.4 +/0 0.6% (mean +/- S.E.) while the corresponding value in cells incubated in 1 microgram/ml bleomycin was 12.5 +/- 0.6% (n = 6, P < 0.01). Similar results were obtained when the ratios of newly synthesized type I and type III collagens were estimated by interrupted polyacrylamide disc gel electrophoresis in sodium dodecyl sulfate after a limited proteolytic digestion with pepsin. The results indicate that the increased procollagen synthesis induced by bleomycin in fibroblast cultures is predominantly directed towards the synthesis of type I procollagen.  相似文献   

5.
Smooth muscle cells were grown from explants of the tunica media of fetal and adult human aorta. Collagen was isolated after incubation with [14C]glycine and was characterized by ion-exchange chromatography. All cells investigated synthesized two types of collagen: Type I (chain composition [alpha1(I)]2alpha2) and type III (chain composition [alpha1(III)]3). The collagen made by cells from adult donors contained approximately 70% type I and 30% type III collagen. This corresponds to the collagen composition in teh original tissue. No age-relate change in the type I/type III ratio was found with cells from donors between 9 and 67 years of age. On the other hand, the type III portion of the collagen made by fetal cells was markedly less (about 15-20% of total collagen).  相似文献   

6.
The use of protein hydroxy ethylmethacrylate (HEMA) hydrogels to control cell morphology and growth, as well as the synthesis of extracellular matrix components, is described in this communication. HEMA hydrogels prepared with collagen support growth of embryonic lung fibroblasts (IMR-90), as well as bovine aortic and pulmonary artery endothelial cells at a level comparable to the respective cells grown on tissue culture surfaces. On the other hand, HEMA hydrogels prepared with solubilized elastin inhibit the fibroblast growth and prevent both types of endothelial cell cultures from achieving their normal morphology. These morphologically altered endothelial cells resume a normal cobblestone-like appearance when subcultivated from the elastin-HEMA hydrogels to tissue culture plastic. When pulsed with [14C]proline, the procollagens synthesized by the endothelial cells on the different surfaces vary, as shown by immunoprecipitation and polyacrylamide gel electrophoresis. On the standard tissue culture plastic, the confluent cells produce mainly type III procollagen in the medium, whereas those endothelial cells grown on collagen and elastin-HEMA hydrogels synthesize primarily type I procollagen (much like sprouting cells on tissue culture plastic), regardless of their morphology.  相似文献   

7.
Human fibroblasts when induced to make nonhelical , defective collagen have mechanisms for degrading up to 30% of their newly synthesized collagen intracellularly prior to secretion. To determine if at least a portion of the degradation of defective collagen occurs by lysosomes, extracts of cultured HFL-1 fibroblasts were examined for proteinases capable of degrading denatured type I [3H]procollagen. The majority of the proteolytic activity against denatured [3H]-procollagen had a pH optimum of 3.5-4; it was stimulated by dithiothreitol and inhibited 95% by leupeptin, 10% by pepstatin, and 98% by leupeptin and pepstatin together. Extracts of purified lysosomes from the fibroblasts were active in degrading denatured [3H]procollagen and were completely inhibited by leupeptin and pepstatin. To demonstrate directly that human lung fibroblasts can translocate a portion of their defective collagen to lysosomes, cultured cells were incubated with cis-4-hydroxyproline and labeled with [14C]proline to cause the cells to make nonhelical [14C]procollagen. About 3% of the total intracellular hydroxy[14C]proline was found in lysosomes. If, however, the cells were also treated with NH4Cl, an inhibitor of lysosomal function, 18% of the intracellular hydroxy[14C]proline was found in lysosomes. These results demonstrate that cultured human lung fibroblasts induced to make defective collagen are capable of shunting a portion of such collagen to their lysosomes for intracellular degradation.  相似文献   

8.
The processing of types I and III procollagen was studied in skin fibroblast cultures from type VII A and B of the Ehlers-Danlos syndrome [EDS] and age-matched controls. Synthesis of collagenous proteins was significantly increased in EDS type VII B, and the activities of prolyl-4-hydroxylase and galactosylhydroxylysyl glucosyltransferase were slightly increased in these cell lines, reflecting increased biosynthesis of collagen. The synthesis of collagenous proteins was close to normal in EDS type VII A cells. The synthesis of type III procollagen per cell was increased, as also was the ratio of immunoreactive type III procollagen to total collagen production. The activity of type I procollagen amino-terminal proteinase was decreased in skin fibroblasts of type VII A and normal in those of type VII B relative to cell protein or DNA. Type III amino-terminal proteinase activity was of a level found in normal cells when expressed relative to the protein or DNA, and the release of type III amino-terminal propeptides was nevertheless not disturbed in these EDS type VII cell cultures. The results show that only the conversion of type I procollagen is defective in EDS type VII, and no general defect in procollagen processing can be found in EDS type VII as has been suggested in the case of dermatosparaxis, a connective tissue disorder in animals caused by disturbed procollagen conversion.  相似文献   

9.
Procollagen type III N-proteinase, of Mr about 70,000, was detected in human placental tissue and purified from this source more than 5800-fold. It was found to be a glycoprotein, which was bound to both concanavalin A-Ultrogel and heparin-Sepharose affinity columns. Binding to a type III pN-collagen-Sepharose affinity column was used as the final step in purification. The purified enzyme accepted only native type III procollagen or [14C]carboxymethylated type III pN-collagen as its substrate; type I, type II and type IV procollagen and heat-denatured type III pN-collagen were not cleaved by the enzyme. Antibodies against this purified enzyme protein raised in rabbits demonstrated a high inhibitory effect on the enzyme activity. Immunoblotting of the denatured protein and immunoelectrophoresis of the native enzyme showed only one major antigenic component, again with an Mr of about 70,000. The antibodies cross-reacted with the enzyme preparation from foetal-calf aorta smooth-muscle cells.  相似文献   

10.
11.
12.
Hepatocytes were obtained from rat liver and maintained in primary culture for periods up to 14 days. Collagen synthesis was maximal after 3–5 days and declined thereafter. The rate of collagen production was appox. one-tenth that observed by the rat skin fibroblasts of the same animals after 3–5 passages. Type I procollagen, the major macromolecular collagenous species, was identified as a 450 000 dalton molecule which was converted to 120 000 dalton, denatured, reduced procollagen chains. Prior pepsin digestion of the native procollagen released 95 000 dalton collagen chains identified as α1(I) and α2(I) by co-migration with carrier rat skin type I collagen chains. The production of type III procollagen was also tentatively identified by DEAE-cellulose chromatography. This material was isolated and identified with type-specific antibodies developed against the amino-terminal extension peptide of bovine skin type III procollagen. The relative distribution of type I:type III procollagen was estimated at 7:3 similar to the ratio previously found in whole rat liver. No evidence of type IV or type V procollagen biosynthesis was observed. These results suggest that rat hepatocytes in primary culture are capable of interstitial type I and type III collagen biosynthesis in a ratio similar to that found in their parent hepatic tissue in situ. They also suggest that the less abundant type IV (basement membrane-associated) or type V are nor major collagenous products of these cells.  相似文献   

13.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

14.
Covalent binding of acetaldehyde to type III collagen   总被引:1,自引:0,他引:1  
Incubation of neutral salt soluble type III pN-collagen with [14C]acetaldehyde in vitro resulted in the formation of spontaneously stable acetaldehyde-protein adducts. This reaction occurred primarily at lysine residues and it was not affected by 0.2-2 mM concentrations of ascorbate but addition of sodiumcyanoborohydride increased the stable adducts by 3-5-fold. When confluent cultures of human skin fibroblasts were incubated with physiologically relevant concentrations of acetaldehyde, it became covalently bound to type III procollagen secreted into the medium. We propose that acetaldehyde binding to collagen fibrils occurs in vivo following chronic alcohol consumption.  相似文献   

15.
Studies were performed to determine whether cultured odontogenic cells from rabbit tooth germ (RP cell) could synthesize dentine-like collagen. When cells were cultured with [14C]proline, 33% of the total incorporated proteins present were collagenous. Cultured RP cells were labelled with [14C]proline in the presence of β-aminopropionitrile. The resulting fractions, on analysis by CM-cellulose chromatography, contained three radioactive protein peaks, α1(I), [α1(III)]3, α2. From the radioactive measurements, RP cells synthesized a significant amount of type III collagen, comparable to type I collagen.DEAE-cellulose chromatography was used to separate collagen molecules from collagen precursors. The results showed that 60% of total collagen precursor was type III precursor and the remainder was type I precursor.CM-cellulose chromatography of CNBr peptides of collagen from culture medium and cell extract revealed the presence of type I and type III collagen. Thus, the RP cell, which is a diploid cell, is unique in the predominance of type III collagen in culture, differing thereby from the character of collagen in vivo.  相似文献   

16.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

17.
18.
The production and accumulation of collagen-rich extracellular matrix are common hallmarks during the process of renal fibrogenesis. However, the mechanisms of the regulation of collagen synthesis in renal fibrosis are still unclear. Hrd1, an E3 ubiquitin ligase, plays important roles for protein folding in ER and transport to Golgi. Here, we examined the hypothesis that Hrd1 posttranslationally regulates collagen synthesis in renal interstitial fibrogenesis. Unilateral ureteral obstruction induced Hrd1 expression, predominantly in the renal interstitium and tubular epithelium of fibrotic kidneys. Transforming growth factor β1, as a key mediator in kidney fibrosis, significantly increased the expressions of Hrd1, α-smooth muscle actin, fibronectin as well as procollagen I and mature collagen I in dose-dependent manner in tubular epithelial cells, suggesting that collagen I maturation might be modulated during renal fibrosis. In cultured renal fibroblasts, Hrd1 knockdown decreased secreted collagen I ~60 % in the supernatant of NRK-49F cells. Conversely, Hrd1 overexpression increased secreted collagen I ~1.5-fold. Hrd1 overexpression significantly increased the expressions of both procollagen I and mature collagen I, ~2.2-fold and ~1.8-fold, respectively. However, Hrd1 knockdown markedly decreased the expression of mature collagen I ~80 %, while procollagen I expression only was decreased ~21 %. Moreover, short interfering RNA-induced knockdown of Sec23A blunted the increase in collagen I expression (both immature and mature form) by Hrd1 overexpression and returned collagen I expression toward control levels. These results indicate that Hrd1 plays an important role in the maturation of collagen I in renal fibrosis, and that Sec23A pathway is required for ER-to-Golgi procollagen trafficking to promote collagen synthesis.  相似文献   

19.
Keloid is a dermal fibrotic disease characterized by excessive accumulation of mainly type I collagen in extracellular matrix of the dermis. We have studied the expression levels of collagen types I and III, and its molecular chaperone HSP47 in keloid lesions and surrounding unaffected skin using Northern and Western blotting and immunohistochemical analyses. Collagen types I and III mRNA levels were found to be upregulated 20-fold in keloid tissues, contradicting previous reports of nearly normal type III collagen levels in this disease. HSP47 expression in keloid lesions was also highly upregulated; eightfold at mRNA level and more than 16-fold at the protein level. Strong upregulation of these three proteins in keloid was confirmed by immunohistochemical staining. These results suggest that accumulation of both type I and type III collagen is important for the development of keloid lesions, and that HSP47 plays a role in the rapid and extensive synthesis of collagen in keloid tissues.  相似文献   

20.
Differential expression of fibrillar collagen genes during callus formation   总被引:5,自引:0,他引:5  
An experimental fracture healing model in the rat tibio-fibular bone was employed to study the appearance of messenger RNAs for types I, II and III collagens during endochondral fracture repair. Total RNA was extracted from normal bone and from callus tissue at various time points. The total RNAs were analyzed in Northern hybridization for their contents of procollagen mRNAs using specific cDNA clones. The results show that during the first week of fracture repair type III collagen mRNA is increased to the greatest extent, followed by type II collagen mRNA during the second week. The 28-day callus resembles bone by containing mainly type I collagen mRNAs and very little type II or III collagen mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号