首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
李伟  陈怀谷  李伟  张爱香  陈丽华  姜伟丽 《遗传》2007,29(9):1154-1160
利用公共的真菌基因组数据库资源, 对核盘菌(Sclerotinia sclerotiorum)和灰葡萄孢(Botrytis cinerea)基因组中SSRs的结构类型、分布、丰度及最长序列等进行了系统分析, 并与已经研究过的禾谷镰孢菌(Fusarium graminearum), 稻瘟病菌(Magnaporthe grisea)和黑粉菌(Ustilago maydis)等几种植物病原真菌基因组中的SSRs进行了比较。结果表明: 核盘菌和灰葡萄孢基因组中的SSRs非常丰富, 分别为6 539和8 627个, 并且在结构类型和分布规律上具有一定的相似性; 与其他几种病原真菌相比, 核盘菌和灰葡萄孢基因组中长重复的四、五、六核苷酸基序更为丰富, 从而使得这两种真菌具有更高的变异性。同时, 我们发现真菌基因组中SSRs的丰度与基因组的大小及GC含量没有必然的关系。文章对核盘菌和灰葡萄孢基因组中SSRs的丰度、出现频率及最长基序的分析为快速、便捷地设计多态性丰富的SSRs引物提供了有益的信息。  相似文献   

2.
金城 《微生物学通报》2013,40(3):532-532
灰葡萄孢是一种重要的植物病原真菌,其寄主范围广泛,能危害世界上230多种双子叶植物,常给农业生产造成重大的经济损失[1-3].由灰葡萄孢引起的灰霉病是目前我国温室蔬菜生产中最主要的病害之一,一般造成全年减产20%-25%,严重时达到40%以上[4].因此,研究该病菌的致病机理对该病防治具有重要意义,并且随着灰葡萄孢基因组测序的完成,灰葡萄孢已成为发育生物学、分子植物病理学研究的模式生物之一.  相似文献   

3.
为明确两种葡萄孢属真菌对不同百合品种叶片和花瓣的侵染能力,采用离体叶片接种法测定灰葡萄孢Botrytis cinerea和椭圆葡萄孢Botrytis elliptica对4个百合品种叶片和花瓣的侵染时间和病斑扩展速度。结果表明,供试百合花瓣接种灰葡萄孢病斑出现时间明显早于叶片,而不同品种花瓣接种椭圆葡萄孢病斑出现时间差异显著。此外,百合品种‘木门’叶片接种椭圆葡萄孢96 h后仍没有病斑出现,而花瓣接种后48 h病斑出现,说明‘木门’叶片对椭圆葡萄孢抗性较强,而花瓣较易感病。  相似文献   

4.
从80株乳酸菌中筛选出45株具有抗灰葡萄孢霉菌活性的乳酸菌菌株,其中10株具有较强抗灰葡萄孢霉菌活性。对这10株乳酸菌菌株的抗植物致病真菌谱进行了研究,这10株乳酸菌对番茄早疫病菌,甜瓜疫霉菌,甜瓜枯萎病菌,苹果炭疽病菌的生长均有较强的抑制作用。其中1株具有广谱抗植物致病真菌活性的乳酸菌菌株BX6-4为植物乳杆菌。经番茄离体叶片接种试验发现,植物乳杆菌BX6-4的发酵液能够在体外强烈地抑制灰葡萄孢霉菌的生长。  相似文献   

5.
在陕西省太白县采集到伊贝母(Fritillaria pallidiflora Schrenk.)的菌核病致病真菌,伊贝母葡萄孢盘 Botryotinia fritillarii-pallidiflori Q.T.Chen et J.L.Li sp.nov.新种。并报道了其形态特征及其与椭圆葡萄孢 [Botrytis elliptica(Berk.)Cooke]和驴蹄草葡萄孢盘(Botryotinia calthae Hennebert et Elliott)的区别。  相似文献   

6.
葡萄酒酿造是多种微生物参与代谢的过程,其中的微生物在没有外源接种的情况下通常认为源自酿酒葡萄本身。应用高通量测序技术,分析沙城地区不同品种酿酒葡萄表皮的微生物群落,旨在从源头上了解葡萄酒酿造原料的品质,为研究酿酒葡萄微生物对酿酒品质的影响提供理论依据。结果显示,无论细菌还是真菌丰富度最大的均为雷司令,细菌主要分布在变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)等8个门,优势细菌主要是欧文氏菌属(Erwinia)、假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)等6个属。真菌仅分布在子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和接合菌门(Zygomycota)3个门,链格孢菌属(Alternaria)、枝孢属(Cladosporium)、茎点霉属(Phoma)、镰孢属(Fusarium)等9个主要的属。细菌中心OTU最相似菌种分别为节杆菌(Arthrobacter sp.)、假单胞菌(Pseudomonas sp.)等,真菌为枝孢菌(Cladosporiumsp.)、茎点霉(Phoma sp.)、链格孢菌(Alternaria sp.)以及大量未知种属的OTU。研究表明,葡萄品种是影响微生物群落的最重要的因素,推测酿酒葡萄上的一些微生物会对葡萄植株的健康、葡萄果实的品质以及葡萄酒酿造产生有益或有害的影响。  相似文献   

7.
玉米小斑病是我国玉米生产上的重要病害之一,每年造成玉米大幅减产.真菌病毒能够在真菌体内进行复制和繁殖,可以作为生物防治的潜在资源.为了明确河北省玉米小斑病菌玉米离蠕孢dsRNA病毒的多样性及生物学特性,为玉米小斑病的防控提供潜在生防资源,本研究采用单孢分离的方法分离纯化玉米小斑病菌150株,通过dsRNA提取及凝胶检测...  相似文献   

8.
【背景】灰葡萄孢是一种重要的植物病原真菌,实验室前期明确了灰葡萄孢犬尿氨酸单加氧酶(kynurenine3-monooxygenase,KMO)基因BcKMO参与调控病菌的生长发育和致病力。犬尿氨酸单加氧酶(KMO)是犬尿氨酸途径的关键酶,但灰葡萄孢是否存在犬尿氨酸途径及其在病菌生长、发育和致病过程中的功能尚未见相关报道。【目的】鉴定灰葡萄孢犬尿氨酸途径中的关键酶基因,确定灰葡萄孢犬尿氨酸途径的存在,为阐明灰葡萄孢生长发育和致病力的分子机理奠定基础。【方法】利用生物信息学方法,对灰葡萄孢犬尿氨酸途径中犬尿氨酸酶(kynureninase,KYN)、吲哚-2,3-双加氧酶(indoleamine-2,3-dioxygenase,IDO)、犬尿氨酸氨基转移酶(kynurenine amino transferase,KAT)的编码基因进行分析;利用Real-time PCR技术,检测灰葡萄孢野生型BC22、BcKMO基因T-DNA插入突变体BCG183、恢复菌株BCG183/BcKMO中犬尿氨酸途径关键酶基因的表达水平;利用真菌犬尿氨酸酶KYN检测试剂盒,测定BcKMO突变体中犬尿氨酸酶(KYN)的含量。【结果】灰葡萄孢中含有2个犬尿氨酸氨基转移酶(KAT)的编码基因、3个吲哚-2,3-双加氧酶(IDO)的编码基因、10个犬尿氨酸氨基转移酶(KAT)的编码基因。灰葡萄孢KYN编码基因、IDO编码基因、KAT编码基因在突变体BCG183中的表达水平显著高于或低于在野生型和恢复菌株。突变体BCG183中犬尿氨酸酶(KYN)的含量显著低于野生型BC22和恢复菌株。【结论】灰葡萄孢中存在犬尿氨酸途径,灰葡萄孢BcKMO基因突变影响KYN、IDO和KAT编码基因的表达以及犬尿氨酸酶(KYN)的含量。  相似文献   

9.
【目的】揭示葡萄生单轴霉(Plasmoparaviticola)菌围可培养细菌和真菌的多样性特征,筛选对葡萄霜霉病有较强稳定防治效果的生防菌。【方法】连续两年从我国南北方具有代表性的7个葡萄产区采集葡萄霜霉病叶,镊子夹取经保湿培养获得的新鲜霉层并配制孢子囊悬浮液,采用传统分离培养法,结合形态分类、BOX-PCR指纹图谱分析以及分子鉴定结果,对葡萄生单轴霉菌围的可培养细菌和真菌进行聚类分析;采用菌株及其发酵液与病原菌孢子囊悬浮液等体积混合培养测定其对孢子囊的抑制作用,离体叶片接种法检测该菌株及其发酵液对霜霉病的防治效果。【结果】分离获得了90株细菌和110株真菌,分别归属于8个细菌属和14个真菌属,且相同地区不同葡萄品种葡萄生单轴霉菌围的细菌和真菌在同年处于同一分支。假单胞菌属(Pseudomonas)和枝孢属(Cladosporium)稳定存在于各地区不同品种葡萄霜霉病叶上葡萄生单轴霉菌围;在两年间稳定存在的菌株占比多数在80.0%以上且均具有较高的生防作用;其中,广泛分布的6株枝顶孢属(Acremonium)真菌对葡萄霜霉病的防治效果均较好,最高可达100.0%;防治效果较高的11个菌株的无菌发酵液中,黑曲霉(Aspergillusniger) NX2F、苋楔孢黑粉菌(Thecaphora amaranthi) BJ1G和匍枝根霉(Rhizopus stolonifer) BM1L的无菌发酵液防治效果均为100.0%。【结论】葡萄生单轴霉菌围的可培养细菌和真菌群落主要受地区因素影响,有较高的稳定性和生防作用,揭示了枝顶孢属真菌在我国葡萄主要产区葡萄生单轴霉菌围附生的普遍性,为葡萄霜霉病的防治提供了丰富和宝贵的资源。  相似文献   

10.
根据植物病理学和微生物生态学原理,建立了脱落酸(ABA)产生菌的筛选模型。从不同的植物寄主上分离到36株真菌,其中有十余株菌株能产生天然的脱落酸,这些真菌分别属于葡萄孢属(Botrytis)、青霉属(Penicilium)、根霉属(Rhizopus)和镰孢属(Fusarium)。其中一株ABA的产量达到46g/g培养基,经鉴定为灰葡萄孢(B.cinerea)。在此基础上,对该菌株的培养条件进行了优化。  相似文献   

11.
Botrytis cinerea (teleomorph Botryotinia fuckeliana) is a necrotrophic plant pathogenic fungus that causes grey mould and enormous economic losses worldwide in different crops. Control of B. cinerea is difficult due to the appearance of fungicide‐resistant isolates, and the diversity in virulence due to genetic variability and, perhaps, the infection with mycoviruses or fungal viruses. The discovery of mycoviruses and their possible application as biocontrol agents, as well as their use as tools to study the plant–pathogen interaction, has encouraged their study in B. cinerea. Herein, we have analysed the occurrence of mycoviruses in Spanish B. cinerea isolates to approach a better understanding of the interactions among viruses, fungi and plants in this pathosystem. Fifty‐five percent of the B. cinerea isolates analysed contained double‐stranded RNA (dsRNA) elements, and the number of dsRNA elements, their relative concentration and size were variable among isolates. Some of these dsRNAs were related to the presence of virus like rod or isometric particles, and to cellular degeneration and malformed mitochondria. We have also demonstrated that a 3 kb dsRNA present in 55% of the isolates having dsRNA elements was a mycovirus genome. Partial sequence of that mycovirus presented high identity in nucleotide and amino acid sequence with Botrytis cinerea mitovirus 1 (BcMV1). Analysis of the genetic distance within Spanish BcMV1 sequences showed the existence of different isolates of this mitovirus inside the Spanish B. cinerea population analysed. This is the first report of the variability of dsRNA elements and the partial genome sequence of a mitovirus associated with Spanish B. cinerea isolates and the genetic diversity within Spanish isolates of BcMV1.  相似文献   

12.
Mycoviruses are obligate species that are found throughout all subdivisions of the fungal kingdom, with more constantly being discovered. However, only limited information is available about their mode of transmission and distribution. This research describes the distribution and sequence diversity of the Botrytis virus F (BotV-F) mycovirus from a survey of 84 Botrytis cinerea isolates collected from New Zealand and around the world. Using an RT-PCR approach, 12 BotV-F positive isolates were discovered, but there was no correlation to either plant host or geographic region from which the fungus was isolated. Subsequent phylogenetic analysis of BotV-F sequences suggest that this mycovirus has had a long association with B. cinerea, and has been co-distributed worldwide as B. cinerea has spread. In addition, these results suggest that the B. cinerea vegetative incompatibility mechanism may not completely prevent transmission of mycoviruses like BotV-F between fungal isolates from different compatibility groups. The potential utility of mycovirus sequence analysis to studies of fungal populations is discussed.  相似文献   

13.
Mycoviruses (fungal viruses) are reviewed with emphasis on plant pathogenic fungi. Based on the presence of virus-like particles and unencapsidated dsRNAs, mycoviruses are common in all major fungal groups. Over 80 mycovirus species have been officially recognized from ten virus families, but a paucity of nucleic acid sequence data makes assignment of many reported mycoviruses difficult. Although most of the particle types recognized to date are isometric, a variety of morphologies have been found and, additionally, many apparently unencapsidated dsRNAs have been reported. Until recently, most characterized mycoviruses have dsRNA genomes, but ssRNA mycoviruses now constitute about one-third of the total. Two hypotheses for the origin of mycoviruses of plant pathogens are discussed: the first that they are of unknown but ancient origin and have coevolved along with their hosts, the second that they have relatively recently moved from a fungal plant host into the fungus. Although mycoviruses are typically readily transmitted through asexual spores, transmission through sexual spores varies with the host fungus. Evidence for natural horizontal transmission has been found. Typically, mycoviruses are apparently symptomless (cryptic) but beneficial effects on the host fungus have been reported. Of more practical interest to plant pathologists are those viruses that confer a hypovirulent phenotype, and the scope for using such viruses as biocontrol agents is reviewed. New tools are being developed based on host genome studies that will help to address the intellectual challenge of understanding the fungal–virus interactions and the practical challenge of manipulating this relationship to develop novel biocontrol agents for important plant pathogens.  相似文献   

14.
RNA silencing is an ancient regulatory mechanism operating in all eukaryotic cells. In fungi, it was first discovered in Neurospora crassa, although its potential as a defence mechanism against mycoviruses was first reported in Cryphonectria parasitica and, later, in several fungal species. There is little evidence of the antiviral potential of RNA silencing in the phytopathogenic species of the fungal genus Botrytis. Moreover, little is known about the RNA silencing components in these fungi, although the analysis of public genome databases identified two Dicer‐like genes in B. cinerea, as in most of the ascomycetes sequenced to date. In this work, we used deep sequencing to study the virus‐derived small RNA (vsiRNA) populations from different mycoviruses infecting field isolates of Botrytis spp. The mycoviruses under study belong to different genera and species, and have different types of genome [double‐stranded RNA (dsRNA), (+)single‐stranded RNA (ssRNA) and (–)ssRNA]. In general, vsiRNAs derived from mycoviruses are mostly of 21, 20 and 22 nucleotides in length, possess sense or antisense orientation, either in a similar ratio or with a predominance of sense polarity depending on the virus species, have predominantly U at their 5′ end, and are unevenly distributed along the viral genome, showing conspicuous hotspots of vsiRNA accumulation. These characteristics reveal striking similarities with vsiRNAs produced by plant viruses, suggesting similar pathways of viral targeting in plants and fungi. We have shown that the fungal RNA silencing machinery acts against the mycoviruses used in this work in a similar manner independent of their viral or fungal origin.  相似文献   

15.
16.
Fifteen families of mycoviruses have been described and 80% of these catalogued. However, their evolutionary relationship with fungi is not clear. The mycovirus genome can be formed by single- or double-stranded RNA or single-stranded DNA. The effects of mycoviruses range from the induction of a cryptic state (asymptomatic) to promotion of hyper- or hypovirulence in the host. Horizontal transmission of mycoviruses is determined by the presence of different vegetative compatibility types and mating types. Biocontrol of chestnut blight (Cryphonectria parasitica) has been found to be a successful mycovirus-based treatment and is considered a model in forest disease management. Development of this type of biological control tool for use in other forest pathologies requires a sound knowledge of viral symptomatology and transmission. The present review focuses on the application of mycoviruses and the prospects for future use in the biological control of forest diseases as well as on advances in mycovirus-applied research in forestry, landscape and culture of woody plants.  相似文献   

17.
Grapevine (Vitis spp.) is a widespread fruit tree hosting many viral entities that interact with the plant modifying its responses to the environment. The production of virus-free plants is becoming increasingly crucial for the use of grapevine as a model species in different studies. Using high-throughput RNA sequencing, the viromes of seven mother plants grown in a germplasm collection vineyard were sequenced. In addition to the viruses and viroids already detected in grapevine, we identified 13 putative new mycoviruses. The different spread among grapevine tissues collected in vineyard, greenhouse and in vitro conditions suggested a clear distinction between viruses/viroids and mycoviruses that can successfully be exploited for their identification. Mycoviruses were absent in in vitro cultures, while plant viruses and viroids were particularly accumulated in these plantlets. Somatic embryogenesis applied to the seven mother plants was effective in the elimination of the complete virome, including mycoviruses. However, different sanitization efficiencies for viroids and grapevine pinot gris virus were observed among genotypes. The absence of mycoviruses in in vitro plantlets, associated with the absence of all viral entities in somaclones, suggested that this regeneration technique is also effective to eradicate endophytic/epiphytic fungi, resulting in gnotobiotic or pseudo-gnotobiotic plants.  相似文献   

18.
《Fungal biology》2022,126(1):75-81
Mycoviruses may influence the pathogenicity of disease-causing fungi. Although mycoviruses have been found in some chytrid fungi, limited testing has not detected them in Batrachochytrium dendrobatidis (Bd), the cause of the devastating amphibian disease, chytridiomycosis. Here we conducted a survey for mycovirus presence in 38 Bd isolates from Australia (n = 31), Brazil (n = 5) and South Korea (n = 2) with a combination of modern high-throughput sequencing and conventional dsRNA cellulose chromatography. Mycoviruses were not detected in any isolates. This result was unexpected, given the long evolutionary history of Bd, as well as the high prevalence of mycoviruses in related fungal species. Given our widespread sampling in Australia and the limited number of Bd introductions, we suggest that mycoviruses are uncommon or absent from Australian Bd. Testing more isolates from regions where Bd originated, as well as regions with high diversity or low fungal virulence may identify mycoviruses that could aid in disease control.  相似文献   

19.
The fungus Botrytis cinerea has been widely accepted as the species responsible for causing gray mold decay of apple, although a second species causing apple decay, B. mali, was reported in 1931. Botrytis mali was validly published in 1931, nevertheless it has always been considered a doubtful species. To study the relationship of Botrytis isolates causing gray mold on apple, DNA sequence analysis was employed. Twenty-eight Botrytis isolates consisting of 10 species were sampled, including two B. mali herbarium specimens from apple originally deposited in 1932. The DNA sequence analysis of the beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) genes placed the isolates into groupings with defined species boundaries that generally reflected the morphologically based model for Botrytis classification. The B. cinerea isolates from apple and other host plants were placed in a single clade. The B. mali herbarium specimens however always fell well outside that clade. The DNA sequence analysis reported in this study support the initial work by Ruehle (1931) describing the apple pathogen B. mali as a unique species.  相似文献   

20.
Li X  Kerrigan J  Chai W  Schnabel G 《Mycologia》2012,104(3):650-658
Blackberry fruits symptomatic for gray mold were collected from three commercial blackberry fields in northwestern South Carolina. Single-spore isolates were generated and two distinct phenotypes were discovered in each location; one sporulated on PDA and one did not. One isolate of each phenotype and location (six isolates total) were selected for in depth molecular and morphological characterization. Glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA polymerase subunit II (RPB2) coding sequence alignment revealed Botrytis cinerea as the sporulating phenotype and a new yet undescribed species as the non-sporulating phenotype. The new Botrytis sp., described herein as Botrytis caroliniana, was most closely related genetically to B. fabiopsis and B. galanthina, the causal agents of gray mold disease of broad bean and snowdrop, respectively. It produces smaller conidia than either B. fabiopsis or B. galanthina, and sequence analysis of genes encoding necrosis and ethylene-inducing proteins (NEPs) also indicated that the Botrytis isolates represent a separate and distinct species. The new species is pathogenic on blackberry fruits and broad bean leaves, which distinguishes it further from B. galanthina. The new species formed white to pale gray colonies with short, tufted aerial mycelium and produced black sclerotia on PDA at 20 C. To our knowledge this is only the third Botrytis species discovered to cause disease on blackberry in the United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号