首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The susceptibility of 26 strains and clones of Leishmania to in vitro killing by lymphokine (LK)-activated macrophages was determined. A spectrum in the susceptibility of Leishmania to macrophage killing was observed. Some leishmanias were completely resistant to killing, including some but not all of the L. mexicana strains studied. This resistance was expressed in amastigotes and stationary growth-phase promastigotes, but not in logarithmic promastigotes. In contrast, some L. braziliensis parasites failed to survive within either activated or nonactivated macrophages. Between these two extremes were strains that survived within nonactivated macrophages, but were readily killed within activated macrophages. These included L. donovani, L. major, and some L. mexicana strains. Finally, one L. mexicana strain (WR357) was found to be susceptible to killing at high LK concentrations, but was relatively resistant at lower LK concentrations or at cutaneous temperatures. The observed differences in susceptibility to macrophage-mediated microbicidal activity may explain, in part, the variable pathogenesis of leishmanial infections.  相似文献   

2.
The immune mechanisms that underlie resistance and susceptibility to leishmaniasis are not completely understood for all species of Leishmania. It is becoming clear that the immune response, the parasite elimination by the host and, as a result, the outcome of the disease depend both on the host and on the species of the infecting Leishmania. Here, we analyzed the outcome of the infection of BALB/c mice with L. guyanensis in vivo and in vitro. We showed that BALB/c mice, which are a prototype of susceptible host for most species of Leishmania, dying from these infections, develop insignificant or no cutaneous lesions and eliminate the parasite when infected with promastigotes of L. guyanensis. In vitro, we found that thioglycollate-elicited BALB/c peritoneal macrophages, which are unable to eliminate L. amazonensis without previous activation with cytokines or lipopolysaccharide, can kill L. guyanensis amastigotes. This is the first report showing that infection of peritoneal macrophages with stationary phase promastigotes efficiently triggers innate microbicidal mechanisms that are effective in eliminating the amastigotes, without exogenous activation. We demonstrated that L. guyanensis amastigotes die inside the macrophages through an apoptotic process that is independent of nitric oxide and is mediated by reactive oxygen intermediates generated in the host cell during infection. This innate killing mechanism of macrophages may account for the resistance of BALB/c mice to infection by L. guyanensis.  相似文献   

3.
4.
Leishmania promastigotes are introduced into the skin by blood-sucking phlebotomine sand flies. In the vertebrate host, promastigotes invade macrophages, transform into amastigotes and multiply intracellularly. Sand fly saliva was shown to enhance the development of cutaneous leishmaniasis lesions by inhibiting some immune functions of the host macrophages. This study demonstrates that sand fly saliva promotes parasite survival and proliferation. First, macrophages gravitated towards increasing concentrations of sand fly saliva in vitro. Secondly, saliva increased the percentage of macrophages that became infected with Leishmania promastigotes and exacerbated the parasite load in these cells. Thus, during natural transmission, saliva probably reduces the exposure of promastigotes to the immune system by attracting macrophages to the parasite inoculation site and by accelerating the entry of promastigotes into macrophages. Saliva may also enhance lesion development by shortening the generation time of dividing intracellular amastigotes.  相似文献   

5.
Leishmania donovani is an obligate intracellular protozoan parasite of macrophages; liver macrophages are, however, the only population of cells which express the resistant Lsh gene phenotype when these cells are infected in vitro. It was of interest to study in vitro the action of Con A-stimulated spleen cell lymphokines (LK) to protect or to cure liver macrophages from infection by L. donovani. Liver and peritoneal macrophages (PEC) from resistant (C57L/J) and susceptible (C57BL/6J) mice were infected in vitro with promastigotes before or after LK treatment; the percentage of infected macrophages was determined 4, 24, 48 and 72 h post-infection. Both macrophage populations were protected or cured by treatment with lymphokines; the cells of the resistant strain were protected or cured more effectively than those of the susceptible strain. The capacity for cure or for protection following LK treatment of liver and PEC macrophages was similar within each strain. Supernatants from the IL-2-produced MLA-144 cell line had no effect to protect or cure macrophages. This study indicates that the response of macrophages to the action of LK is also important in determining the susceptibility of mice to L. donovani; this model in vitro provides a good approximation of the response of macrophages to therapy.  相似文献   

6.
The survival of Leishmania parasites within macrophages is influenced by generation of free radicals. To establish whether generation of free radicals influenced chemotherapeutic response, promastigotes from isolates causing self-healing or delayed/non-self-healing cutaneous leishmaniasis (CL) or visceral leishmaniasis (VL) were evaluated for their susceptibility to nitric oxide (NO), antimony and miltefosine. In a self-healing CL strain of Leishmania major (5ASKH), susceptibility to NO and antimony was higher than other species. Likewise, a Leishmania amazonensis strain, M2269, showed greater susceptibility to NO and antimony than other species but no such correlation was observed with miltefosine. Additionally, 5ASKH and M2269 showed poorer free radical scavenging capacity as also their thiol levels were lower than species causing VL. Collectively, our study suggests that self-healing isolates tend to be more susceptible to oxidative stress.  相似文献   

7.
Macrophages of the cell line J774 were used in a comparative study of virulence involving amastigote stages of Leishmania mexicana pifanoi isolated from macrophages (AMA-M) of the aforementioned cell line, amastigote forms grown in the UM-54-cell-free medium (AMA-C), and promastigote stages. The macrophage cultures were inoculated with AMA-M and AMA-C at the culture cell to parasite ratios of 1:3, 1:5, and 1:10. The macrophages were exposed to either kind of amastigotes for 24, 48, and 72 h. At the end of each of these periods, and for each dilution, the percentages of macrophages harboring the parasites within their cytoplasm and the mean numbers of intracellular parasite/macrophage were estimated on the basis of examination of 200 phagocytes. When either AMA-M or AMA-C were employed, after 24 h, the percentages of infected macrophages were, respectively, 84.5%, 89.0%, and 94.5% for the three aforementioned dilutions, the majority of the phagocytes containing 1-5 parasites. After 48- and 72-h exposures, the macrophages harbored 6-11 and 11-20 amastigotes/cell, respectively. Evidently intracellular multiplication of the amastigotes has taken place. In contrast to the results obtained with amastigote forms, after inoculations of the macrophages cultures with promastigotes at the dilutions previously used for amastigotes, only 48-78 phagocytes were found to contain intracellular stages within their cytoplasm. Many macrophages were parasite-free, especially when exposed to fewer promastigotes. Experiments in which 5 X10(6) promastigotes, AMA-M, or AMA-C were inoculated into the footpads of hamsters yielded the following results with regard to terminal footpad volumes: 1.57, 3.31, and 3.32 cm3, respectively. Evidently both kinds of amastigotes had equal virulence for hamsters; however, the promastigote stages were much les virulent for these experimental hosts.  相似文献   

8.
Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes--which were destroyed--differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation--a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.  相似文献   

9.
Antimony unresponsiveness in mucocutaneous and visceral leishmaniasis is a serious clinical problem. Information on the mechanisms and characteristics of drug resistance in parasites that suggest chemotherapeutic strategies to overcome resistance is of practical importance. We developed nine lines of Leishmania resistant to drugs, the major emphasis being on pentavalent antimony (Sb) complexed to carbohydrate in the form of sodium stibogluconate (Pentostam), one of the only two antileishmanial agents with a clearly favorable therapeutic index. Resistance to Pentostam (33- to 212-fold increase) was obtained in promastigotes of Leishmania in vitro by exposure to gradually increasing concentrations of drug over several passages. Resistance to Sb was found to be either stable or unstable. Stable resistance to Sb required (greater than 3) exposures of the initial sensitive clones to Pentostam and tended to stabilize with increased time under pressure. In general, resistance obtained in a clone after only a few (less than or equal to 3) step treatments was low and unstable. Differences in the susceptibility to Pentostam were found between strains isolated from patients with American cutaneous leishmaniasis. In addition, natural isolates of Leishmania from patients represented a heterogeneous population of parasites as demonstrated by a biphasic concentration response to Sb (typical of mixed population dynamics) and by marked differences in susceptibility to Pentostam among clones prepared from single isolates. These results suggest that the emergence of parasite resistance to antimonial treatment is a potential risk of inadequate dose therapy.  相似文献   

10.
Protozoan parasites of Leishmania spp. invade macrophages as promastigotes and differentiate into replicative amastigotes within parasitophorous vacuoles. Infection of inbred strains of mice with Leishmania major is a well-studied model of the mammalian immune response to Leishmania species, but the ultrastructure and biochemical properties of the parasitophorous vacuole occupied by this parasite have been best characterized for other species of Leishmania. We examined the parasitophorous vacuole occupied by L. major in lymph nodes of infected mice and in bone marrow-derived macrophages infected in vitro. At all time points after infection, single L. major amastigotes were wrapped tightly by host membrane, suggesting that amastigotes segregate into separate vacuoles during replication. This small, individual vacuole contrasts sharply with the large, communal vacuoles occupied by Leishmania amazonensis. An extensive survey of the literature revealed that the single vacuoles occupied by L. major are characteristic of those formed by Old World species of Leishmania, while New World species of Leishmania form large vacuoles occupied by many amastigotes.  相似文献   

11.
《Free radical research》2013,47(5):665-673
Abstract

The survival of Leishmania parasites within macrophages is influenced by generation of free radicals. To establish whether generation of free radicals influenced chemotherapeutic response, promastigotes from isolates causing self-healing or delayed/non-self-healing cutaneous leishmaniasis (CL) or visceral leishmaniasis (VL) were evaluated for their susceptibility to nitric oxide (NO), antimony and miltefosine. In a self-healing CL strain of Leishmania major (5ASKH), susceptibility to NO and antimony was higher than other species. Likewise, a Leishmania amazonensis strain, M2269, showed greater susceptibility to NO and antimony than other species but no such correlation was observed with miltefosine. Additionally, 5ASKH and M2269 showed poorer free radical scavenging capacity as also their thiol levels were lower than species causing VL. Collectively, our study suggests that self-healing isolates tend to be more susceptible to oxidative stress.  相似文献   

12.
Arsenicals and antimonials are first line drugs for the treatment of trypanosomal and leishmanial diseases. To create the active form of the drug, Sb(V) must be reduced to Sb(III). Because arsenic and antimony are related metalloids, and arsenical resistant Leishmania strains are frequently cross-resistant to antimonials, we considered the possibility that Sb(V) is reduced by a leishmanial As(V) reductase. The sequence for the arsenate reductase of Saccharomyces cerevisiae, ScAcr2p, was used to clone the gene for a homologue, LmACR2, from Leishmania major. LmACR2 was able to complement the arsenate-sensitive phenotype of an arsC deletion strain of Escherichia coli or an ScACR2 deletion strain of Saccharomyces cerevisiae. Transfection of Leishmania infantum with LmACR2 augmented Pentostam sensitivity in intracellular amastigotes. LmACR2 was purified and shown to reduce both As(V) and Sb(V). This is the first report of an enzyme that confers Pentostam sensitivity in intracellular amastigotes of Leishmania. We propose that LmACR2 is responsible for reduction of the pentavalent antimony in Pentostam to the active trivalent form of the drug in Leishmania.  相似文献   

13.
Paromomycin (PMM) has recently been introduced for treatment of visceral leishmaniasis in India. Although no clinical resistance has yet been reported, proactive vigilance should be warranted. The present in vitro study compared the outcome and stability of experimental PMM-resistance induction on promastigotes and intracellular amastigotes. Cloned antimony-resistant L. donovani field isolates from India and Nepal were exposed to stepwise increasing concentrations of PMM (up to 500 µM), either as promastigotes or intracellular amastigotes. One resulting resistant strain was cloned and checked for stability of resistance by drug-free in vitro passage as promastigotes for 20 weeks or a single in vivo passage in the golden hamster. Resistance selection in promastigotes took about 25 weeks to reach the maximal 97 µM inclusion level that did not affect normal growth. Comparison of the IC50 values between the parent and the selected strains revealed a 9 to 11-fold resistance for the Indian and 3 to 5-fold for the Nepalese strains whereby the resistant phenotype was also maintained at the level of the amastigote. Applying PMM pressure to intracellular amastigotes produced resistance after just two selection cycles (IC50 = 199 µM) compared to the parent strain (IC50 = 45 µM). In the amastigote-induced strains/clones, lower PMM susceptibilities were seen only in amastigotes and not at all in promastigotes. This resistance phenotype remained stable after serial in vitro passage as promastigote for 20 weeks and after a single in vivo passage in the hamster. This study clearly demonstrates that a different PMM-resistance phenotype is obtained whether drug selection is applied to promastigotes or intracellular amastigotes. These findings may have important relevance to resistance mechanism investigations and the likelihood of resistance development and detection in the field.  相似文献   

14.
The life stages of Leishmania spp. include the infectious promastigote and the replicative intracellular amastigote. Each stage is phagocytosed by macrophages during the parasite life cycle. We previously showed that caveolae, a subset of cholesterol-rich membrane lipid rafts, facilitate uptake and intracellular survival of virulent promastigotes by macrophages, at least in part, by delaying parasitophorous vacuole (PV)-lysosome fusion. We hypothesized that amastigotes and promastigotes would differ in their route of macrophage entry and mechanism of PV maturation. Indeed, transient disruption of macrophage lipid rafts decreased the entry of promastigotes, but not amastigotes, into macrophages (P<0.001). Promastigote-containing PVs were positive for caveolin-1, and co-localized transiently with EEA-1 and Rab5 at 5 minutes. Amastigote-generated PVs lacked caveolin-1 but retained Rab5 and EEA-1 for at least 30 minutes or 2 hours, respectively. Coinciding with their conversion into amastigotes, the number of promastigote PVs positive for LAMP-1 increased from 20% at 1 hour, to 46% by 24 hours, (P<0.001, Chi square). In contrast, more than 80% of amastigote-initiated PVs were LAMP-1+ at both 1 and 24 hours. Furthermore, lipid raft disruption increased LAMP-1 recruitment to promastigote, but not to amastigote-containing compartments. Overall, our data showed that promastigotes enter macrophages through cholesterol-rich domains like caveolae to delay fusion with lysosomes. In contrast, amastigotes enter through a non-caveolae pathway, and their PVs rapidly fuse with late endosomes but prolong their association with early endosome markers. These results suggest a model in which promastigotes and amastigotes use different mechanisms to enter macrophages, modulate the kinetics of phagosome maturation, and facilitate their intracellular survival.  相似文献   

15.
Interleukin 1 (IL 1) is a principal mediator of the host immune response to microbial challenge. Accessory cells of the monocyte-macrophage series are a major source of this cytokine and are also chronically parasitized by protozoa of the genus Leishmania. This suggests that characterization of the macrophage IL 1 response to Leishmania would increase our understanding of the regulation of host immunity to these organisms. In the present study, the macrophage IL 1 response to Leishmania donovani was examined because infections with this organism have findings consistent with parasite-specific T cell unresponsiveness. Cytokine activity was measured either by direct stimulation or by co-stimulation of thymocytes. Conditioned media from BALB/c resident peritoneal macrophages infected with amastigotes of L. donovani contained no more IL 1 than did supernatant fluids of control cells. In contrast, supernatants from cells stimulated with lipopolysaccharide or heat-killed Listeria monocytogenes had significantly increased cytokine content. Resident cells infected with L. donovani for 4 hr before being stimulated with Listeria demonstrated a suppressed IL 1 response (approximately 40% of Listeria alone) to this secondary particulate stimulus. In contrast, the secondary response of leishmania-preinfected cells to lipopolysaccharide was not affected. To examine whether accessory cell nonresponsiveness to L. donovani (with respect to IL 1) was related to the state of macrophage activation, elicited peritoneal macrophages obtained by injection of proteose peptone were also studied. These cells responded to stimulation with lipopolysaccharide and fixed Staphylococcus aureus with increases in intracellular, membrane, and secreted cytokine activities. In contrast, L. donovani failed to induce any of these activities. This was found to be the case irrespective of whether amastigotes were alive or killed or opsonized with specific antibodies. Elicited cells preinfected with Leishmania responded normally to secondary stimulation with lipopolysaccharide, but not S. aureus (64% of Staphylococcus alone). In addition, attachment and penetration of L. donovani promastigotes and their subsequent conversion to amastigotes within macrophages failed to induce IL 1 synthesis. The findings of this study indicate that L. donovani has the ability to both evade and suppress the macrophage IL 1 response. Because this monokine provides an obligatory signal during macrophage-dependent T cell activation, evasion of signal transduction for IL 1 synthesis may be related to defects in cell-mediated immunity which occur during infections with this organism.  相似文献   

16.
Leishmania tropica, which is endemic in Turkey, is the causative agent of cutaneous leishmaniasis. Leishmania tropica promastigotes (2 x 10(7)) isolated from a patient with dermal leishmaniasis and reproduced in NNN medium were inoculated subcutaneously into the footpads of 10 Balb/c mice. Cutaneous leishmaniasis developed on the footpads of 4 mice approximately 45 days later. Leishmania tropica amastigotes were observed in smear slides and then cultivated in NNN medium. Balb/c mice are a suitable laboratory model for this isolate of L. tropica and thus a source of amastigotes for studies on the immunology, chemotherapy, and pathogenicity of cutaneous leishmaniasis.  相似文献   

17.
Liposomes consisting of stearylamine (SA) and egg yolk phosphatidylcholine (PC) were studied for their cytotoxic activity against freshly transformed promastigotes and intracellular amastigotes of Leishmania donovani, the causative agent of visceral leishmaniasis. More than 99% of the parasites of strain AG83 were killed within 60 min by treatment with 22 mol% SA-PC liposomes (132 microg/ml total lipids). This was further confirmed by incubating the liposome-treated promastigotes at 22 C for 96 hr. The killing activity of the liposomes progressively decreased with lowering lipid concentration. However, weak cytotoxic activity was still detected at 6.6 microg/ml lipids. Leishmanicidal activity of the liposomes became stronger with increasing SA content but was reduced with the incorporation of cholesterol in the liposomes. A similar cytotoxic effect was observed on other Indian strains of L. donovani, for example PKDL and DD8, as well as on species such as Leishmania donovani S1, Leishmania donovani infantum, Leishmania tropica, Leishmania amazonensis, and Leishmania mexicana. However, freshly transformed promastigotes appeared to be more susceptible than the ones subcultured. The strong leishmanicidal activity of SA-PC liposomes was also demonstrated toward intracellular L. donovani amastigotes. The SA-bearing vesicles could effectively inhibit the growth and multiplication of the parasites within the macrophages. The cytolytic activity of these liposomes on leishmanial parasites and low toxicity on host macrophages may, thus, find application in the therapy of leishmaniasis.  相似文献   

18.
Leishmania donovani is an obligate intracellular parasite of mammalian macrophages. The immunosuppressant cyclosporin A (CsA), which inhibits the production of interleukin (IL)-1, IL-2, and interferon-gamma, increased infections 3-fold without affecting expression of the Lsh gene. The objective of this study was to determine how activation of macrophages by lymphokines affects the multiplication and propagation of the parasite within liver macrophages. Susceptible C57BL/6J and resistant C57L/J mice were treated with 200 mg/kg CsA and then infected intravenously with 10(7) amastigotes. Two weeks later macrophages were collected from the liver by perfusion, plated on coverslips, and incubated for 4, 24, and 48 hr. The percentage of infected macrophages and the number of amastigotes/100 cells were determined after staining the cells with Giemsa's stain. The number of infected macrophages and amastigotes per macrophage was significantly greater in animals of both strains that had been treated with CsA. This study demonstrated clearly that lymphokines or other soluble mediators produced by T cells act, in part, to control infection by L. donovani by minimizing both multiplication within macrophages and their dispersion.  相似文献   

19.
Binding of Leishmania promastigotes to macrophages   总被引:3,自引:0,他引:3  
Leishmania tropica promastigotes are easily attached to and engulfed by C3H peritoneal macrophages in vitro at 37 degrees C. Different sugars at 0.3-0.5 M inhibited in vitro the attachment of L. tropica promastigotes to C3H peritoneal macrophages with lactose (Gal-beta [1 leads to 4]Glc) being the most efficient. Inhibition of attachment is also affected by pre-treatment of promastigotes with galactose oxidase. Oligosaccharides extending from promastigote and amastigote cell surfaces contain an important proportion of non-reducing galactose as does the carbohydrate-rich factor (EF) excreted by promastigotes of L. tropica and L. donovani. This study suggests that Leishmania, an obligatory intracellular parasite, uses as a means of entering the host cell a cellular mechanism similar to that used in the removal of damaged cells from blood circulation. This mechanism is assumed to take advantage of the exposed sugars, particularly the exposed non-reducing galactose, on the parasite surface during the stage of attachment. Once the parasite is inside the cell, the EF it produces might have a protective function, being inhibitory to some of the host cell lysosomal enzymes.  相似文献   

20.
The first line drugs for the treatment of leishmaniasis are antimonial derivatives. Poor clinical response may be credited to factors linked to the host, the drug, or the parasite. We determined the sensitivity of Leishmania sp. promastigotes and amastigotes by counting parasites exposed to increasing concentrations of meglumine antimoniate (Glucantime). Leishmania braziliensis promastigotes were significantly more sensitive than those belonging to other species. The sensitivity of L. braziliensis isolates from patients with unfavorable clinical outcome, such as therapeutic failure or relapse, was significantly lower than those from patients who had clinical cure. Poor clinical response to therapy (therapeutic failure or relapse) was also associated with inadequate antimonial therapy. We also found a significant and positive correlation between promastigotes and intracellular amastigotes with regard to their in vitro susceptibilities to meglumine antimoniate. Our data provide evidence for an association between the sensitivity of promastigotes to antimonials in vitro and clinical response to therapy in American tegumentary leishmaniasis. The high sensitivity of the local L. braziliensis to meglumine antimoniate in vitro provides an explanation for the good clinical response of cutaneous leishmaniasis in the municipality of Rio de Janeiro, Brazil, even when low-dose regimens are employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号