首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potassium forms and dominant clay mineralogy were studied in naturally well-drained (Hapludalfs, Eutropept) and poorly-drained soils (Fragiudalfs, Fragiaquept), both composed of the same parent materials (silty-clay or silt loam or clayey-loam). The well-drained soils (i.e. aerated) were cultivated and received larger amounts of K fertilizer; the poorly-drained types (i.e. anoxic) were grasslands and received low amount of K fertilizer. The different aspects investigated-exchangeable and nonexchangeable K, potassium fixation capacity and clay X-ray diffraction diagrams-indicated that the potassium status and the behavior of K-containing clays significantly differed between naturally well-drained aerated soils and anoxic poorly-drained soils. The aerated soils were high in both exchangeable and nonexchangeable K; the K saturation rate was high whereas fixation capacity was moderate. However, the anoxic soils showed a large K depletion and high fixation capacity. The silty-clayey soils studied were more affected by moisture regimes than the silt loam or clayey-loam.The differing K status between aerated and anoxic soils can be explained by several processes and factors, including soil weathering and management and K fertilizer history.  相似文献   

2.
Fixation and release of potassium and ammonium ions in Danish soils   总被引:7,自引:0,他引:7  
Summary Results of a laboratory investigation showed that among soils in Denmark it are chiefly those rich in clay minerals that will fix and release potassium and ammonium. The two cations were fixed in nearly equivalent proportions, but ammonium was fixed preferentially to potassium when added together to the soil. The maximum fixation reached 20 to 30 per cent of the addition in top soil layer but 50 to 80 in subsoil. Soils from a permanent fertilizer experiment showed the strongest fixation and least release of potassium where no potassic fertilizer had been applied for more than 70 years. In soils from another field experiment on residual effect of various nitrogenous fertilizers there was a small but significant increase in content of inorganically fixed ammonium where urea had been applied.  相似文献   

3.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

4.
We confirmed the suitability of electro-ultrafiltration (EUF) for (a) determination of the distribution of potassium fertilizer among the various forms of potassium in soils with a predominance of micaceous minerals in their clay fraction, and (b) investigated the effects of the degree of openness of the dominant micaceous mineral and of incubation time on the kinetics of the EUF extraction of K from these soils.Samples of illitic, mixed-layer and vermiculitic soils from Galicia (N.W. Spain) were incubated at field capacity for 450 days with 0 (blank), 5,15 or 25 mg K (as KCl) per 100 g dry soil. After 1, 30, 150 and 450 days, subsamples were removed and repeatedly extracted using electro-ultrafiltration at low (20° C/200 V) and then high (80° C/400 V) temperature/voltage (6 and 10 five-minute extractions, respectively). Five different pools of K were identified: solution K (Ks), surface and internal K (collectively, Kp), slowly exchangeable K (Ke) and non-exchangeable K (Ki). The effects of increasing the incubation time depended on the dominant clay mineralogy: after 450 days, the K added to illitic soils was mostly solution K, whereas that added to vermiculitic soils was mostly internal K.For both low and high temperature/voltage EUF experiments, the extraction-time data were best fitted by the Elovich equation (extracted K=a+b ln t). The kinetic coefficient b depended on the incubation time and dominant clay mineral, and for given soil and incubation time increased linearly with the dose of added K.Abbreviations EUF Electroultrafiltration - Ks Solution potassium - Kp Easily exchangeable (surface + internal) potassium - Ke Slowly exchangeable potassium - Ki Non-exchangeable potassium  相似文献   

5.
Potassium (K) is a major element for plant growth. The K+ ions fixed in soil 2:1 clay mineral interlayers contribute to plant K nutrition. Such clay minerals are most often the majority in temperate soils. Field and laboratory observations based on X-ray diffraction techniques suggest that 2:1 clay minerals behave as a K reservoir. The present work investigated this idea through data from a replicated long term fertilization experiment which allowed one to address the following questions: (1) Do fertilization treatments induce some modifications (as seen from X-ray diffraction measurements) on soil 2:1 clay mineralogy? (2) Are soil 2:1 clay mineral modifications related to soil K budget in the different plots? (3) Do fertilizer treatments modify clay Al, Si, Mg, Fe or K elemental content? (4) Are clay mineral modifications related to clay K content modifications? (5) Are clay mineral changes related to clay Al, Si, Mg or Fe content as well as those of K content? Our results showed that K fertilization treatments considered in the context of soil K budget are very significantly related to 2:1 soil clay mineralogy and clay K content. The 2:1 clay mineral modifications observed through X-ray measurements were quantitatively correlated with chemically analyzed clay K content. Clay K content modifications are independent from clay Al, Si, Mg or Fe contents. These results show that the soil chemical environment can modify interlayer site occupations (illite content) which suggests that high level accumulation of potassium can occur without any modification of the clay sheet structure. This study therefore validates the view of 2:1 clay minerals as a K reservoir easily quantifiable through X-ray observations.  相似文献   

6.
Summary Wheat and ryegrass were grown in pots containing soil that had either been irradiated, fumigated with methyl bromide, fumigated with formaldehyde, or left untreated. All pots received a basal dressing of potassium, phosphorus and magnesium; response to nitrogen was tested by applying either 0, 0.177 or 0.354 g nitrogen per pot. Irradiation increased the growth of wheat and ryegrass; uptake of nitrogen was also increased in both crops. The amount of fertilizer nitrogen equivalent to the nitrogen supplied by seeds and soil (the “N value”) can be calculated from the efficiency of uptake of fertilizer nitrogen and used to allow for the effect on crop growth of the nitrogen released by irradiated soil. With wheat the increase in growth can be attributed solely to the extra mineral nitrogen released by irradiated soil. However, ryegrass grew a little better than would have been expected if the only effect of irradiation was to increase the release of soil nitrogen. Fumigation with methyl bromide or formaldehyde increased the growth of wheat and ryegrass not given fertilizer nitrogen. However, fumigation with methyl bromide left ionic bromide in the soil, and this depressed the growth of wheat receiving fertilizer nitrogen. Formaldehyde also left residues; these influenced soil metabolism and sometimes depressed the growth of plants given fertilizer nitrogen.  相似文献   

7.
Analysis of new data and reinterpretation of published information for clay minerals found in temperate climate soil profiles indicates that there is often a gradient of “illite-like” clay minerals with depth. We used the term “illite-like” because these observations are based on X-Ray Diffractogram patterns and not on layer charge measurements which allow to define properly illite. It appears that “illite-like” layers are concentrated in the upper, organic - rich portion of the soil profile both under grassland and forest vegetation. “Illite-like” layer quantity seems directly related to soil potassium status. Indeed, intensive agriculture practises without potassium fertilization reduce “illite-like” content in surface soils, whereas several years of potassic fertilization without plant growth can increase “illite-like” content. The potassic soil clay mineral, illite, is particularly important in that it can be the major source of readily available potassium for plants. Spatial and temporal dynamics of clay minerals should be related to the potassium cycle. We propose that the frequently observed general trend of increasing exchangeable potassium in the top soil can be correlated with an increase in “illite-like” in the clays and that the decrease of potassium caused by intensive agricultural practices leads to “illite-like” layer destabilization. This vision of “illite-like” layer as a potassium reservoir refueled by plants and emptied by intensive cropping renews the concept of potassium availability and indicates a need to be discussed as well in natural ecosystems as in cultivated ecosystems.  相似文献   

8.
Summary Potassium in wetland rice soils from five different locations in the Philippines was analyzed using the electroultrafiltration (EUF) technique and by extraction withN NH4 acetate (pH 7). The soils contained low exchangeable K and responded to K application. The K soil test values were calibrated against the rice response to K application under field conditions. EUF extractable soil K correlated highly significantly with the rice yield response to K fertilizer, whereas the NH4 acetate extractable K (exchangeable K) did not. Under limiting K supply in soils, rice yield depends more on the EUF-K than on the exchangeable K. Maximum grain yields were obtained when the EUF-K values after harvest and before wetland preparation were above 30 ppm K.  相似文献   

9.
Seng  Vang  Bell  R.W.  Willett  I.R.  Nesbitt  <<>H.J. 《Plant and Soil》1999,207(2):121-132
In the rainfed lowlands, temporary loss of soil-water saturation during crop growth is a common factor limiting rice (Oryza sativa L.) yield but its effects on phosphorus (P) availability are poorly understood. Rice plants were transplanted into pots containing soils that were either continuously flooded, maintained at field capacity or flooded and then dried to field capacity for 3 weeks during the vegetative stage. A black clay soil (Kandic Plinthaquult) and a sandy soil (Plinthustalf) from south-east Cambodia were compared with or without amendments by rice straw and P fertilizer. Under continuously flooded conditions, the growth of rice was vigorous without straw addition and there was a strong response of rice growth to the addition of P fertilizer. The soil underwent reduction, which increased pH from 4.2 to 5.5 or 6.0, in the black clay or sandy soil, respectively. By contrast, a loss of soil-water saturation 3 weeks before panicle initiation (PI) markedly impaired the growth of rice. This was not through any effect of water stress, and the growth reductions were not as strong as with continued loss of soil-water saturation from transplanting to PI. Fluctuations in soil pH and Eh corresponded closely to changes in soil-water regimes. Growth reductions were attributed to reduced shoot P levels resulting from the decline in P availability during the loss of soil-water saturation. The addition of rice straw stimulated soil reduction and lessened changes in soil pH and Eh during the loss of soil-water saturation in both soils. Straw addition enhanced P uptake by the rice plants during loss of soil-water saturation, but its beneficial effects could not be attributed to the direct addition of P, N or K to the soils. Thus the application of rice straw may be effective in lessening the effects of temporary loss of soil-water saturation on rice growth in lowland rice soils by minimising the decline in P availability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Blake  L.  Mercik  S.  Koerschens  M.  Goulding  K.W.T.  Stempen  S.  Weigel  A.  Poulton  P.R.  Powlson  D.S. 《Plant and Soil》1999,216(1-2):1-14
This study quantitatively assesses the fate of K derived from mineral fertilizers and organic manures and the effective K balance in three long-term field experiments at Rothamsted (UK), Bad Lauchstaedt (Germany) and Skierniewice (Poland). Plant availability, uptake and the overall utilization of K over the last 30 years (1965–1996) are discussed and related to soil K Availability Indices determined by the standard methods used in each of the three countries. In addition, to provide a standard comparison of the three sites, Exchangeable K (1 M NH4OAc) and Non-exchangeable K (K extracted by boiling with 1 M HNO3) were measured on one recent (1995) set of soil samples. Plant availability and utilization of K was partly related to clay content, but more closely to the cation exchange surfaces associated with both mineral and organic constituents and also, at Rothamsted, to the capacity of clay minerals to fix K. The recovery rate of K from mineral fertilizer by crops did not exceed 62%. Fertilizers were least effective in the most strongly K fixing soil at Rothamsted (44% maximum) and most effective in the soil with the highest cation exchange capacity (CEC) at Bad Lauchstaedt (62%), where the greater quantity of exchange sites appear to be associated with humic material. Recoveries of K from farmyard manure (FYM) varied from 22–117% (values of >100% indicating subsoil uptake or the release of reserves). Deficiencies of N, P and Mg in some treatments decreased the effectiveness of applied K and may have caused increased leaching of K from the plough layer. FYM was generally more effective than mineral fertilizer where mineral N and P were not applied because these nutrients were effectively supplied in the manure. But the effectiveness of mineral K fertilizer decreased when applied in combination with FYM because FYM was the preferred source of K. Where FYM application increased the CEC of soils, this also improved K utilization but only where K was not extensively leached or fixed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The phosphate adsorption maximum as calculated by the Langmuir equation was used to predict the fertilizer P requirement of wheat (Triticum aestivium, cv. Caldwell) on both virgin and cultivated Decatur clay loam (clayey, kaolinitic, thermic, Rhodic Paleudult) and Hartsells sandy loam soils (fine-loamy, siliceous, thermic, Typic Hapludult). Soils with higher adsorption maximum were found to require more fertilizer P than soils with lower adsorption maximum. For soils 25% saturation of the adsorption maximum gave the optimum dry matter yield. This corresponded to equilibrium P concentration of 0.45 mg L−1 for Decatur cultivated and 0.31 mg L−1 for Decatur and Hartsells virgin soils for optimum dry matter yield. These values are within the range of those reported previously by other investigators working with different soils.  相似文献   

12.
Summary Slash pine seedlings on Bladen, Leon, and Lakeland soils responded differently to P and N fertilization. Seedling growth was increased by all treatments on Bladen soil, whereas responses by seedlings on the other soils were nil. All soils were low in extractable P with both Bladen and Lakeland yielding 0.85 ppm P. Growth response to fertilizer was positive on Bladen soil because soil and tissue levels of P were raised above “critical” levels and other nutrients were present in adequate quantities. Tissue analyses indicated, and subsequent experiments utilizing macro- and micronutrients proved, that excess P applications reduced certain micronutrients to growth-limiting levels on both Leon and Lakeland soils. Best growth on Leon soil occurred when P and N were supplemented with Cu. On the Lakeland soil macronutrients supplemented with Cu, Mn, or Zn produced greatest growth. Toxicity levels of five micronutrients on the latter soil also were determined. Journal Series No. 3506, Florida Agricultural Experiment Station, Gainesville. Research supported by Cooperative Research in Forest Fertilization program.  相似文献   

13.
Soil nitrogen mineralization potential (N min) has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil N min potential based on clay and organic matter (OM) contents and the impact of grouping soils using these criteria on corn grain (Zea mays L.) yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150) were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha(-1)) were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The N min indicators were spatially structured but soil nitrate (NO3-) was not. The N fertilizer rate to reach maximum grain yield (N max), as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha(-1). The proportion of variability (R2) and the standard error of the estimate (SE) varied among textural groups and N min indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha(-1) rate, the apparent N min potential (ANM) was significantly larger in the clay loam (122 kg ha(-1)) than in the fine sandy loam (80 kg ha(-1)) or clay (64 kg ha(-1)) soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict N max. The N min indicators may also assist the variable rate N fertilizer inputs for corn production.  相似文献   

14.
The development of rice (Oryza sativa L.) cultivars with a higher Zn content in their grains has been suggested as a way to alleviate Zn malnutrition in human populations subsisting on rice in their daily diets. This study was conducted to evaluate the effects of native soil Zn status and fertilizer application on Zn concentrations in grains of five rice genotypes that had previously been identified as either high or low in grain Zn. Genotypes were grown in field trials at four sites ranging in native soil-Zn status from severely deficient to high in plant available Zn. At each site a −Zn plot was compared to a +Zn plot fertilized with 15 kg Zn ha−1. Results showed that native soil Zn status was the dominant factor to determine grain Zn concentrations followed by genotype and fertilizer. Depending on soil-Zn status, grain Zn concentrations could range from 8 mg kg−1 to 47 mg kg−1 in a single genotype. This strong location effect will need to be considered in estimating potential benefits of Zn biofortification. Our data furthermore showed that it was not possible to simply compensate for low soil Zn availability by fertilizer applications. In all soils fertilizer Zn was taken up as seen by a 50–200% increase in total plant Zn content. However, in more Zn deficient soils this additional Zn supply improved straw and grain yield and increased straw Zn concentrations by 43–95% but grain Zn concentrations remained largely unchanged with a maximum increase of 6%. Even in soils with high Zn status fertilizer Zn was predominantly stored in vegetative tissue. Genotypic differences in grain Zn concentrations were significant in all but the severely Zn deficient soil, with genotypic means ranging from 11 to 24 mg kg−1 in a Zn deficient soil and from 34 to 46 mg kg−1 in a high Zn upland soil. Rankings of genotypes remained largely unchanged from Zn deficient to high Zn soils, which suggests that developing high Zn cultivars through conventional breeding is feasible for a range of environments. However, it may be a challenge to develop cultivars that respond to Zn fertilizer with higher grain yield and higher grain Zn concentrations when grown in soils with low native Zn status.  相似文献   

15.
有机无机改性钾肥的结构特征及其增效机理   总被引:1,自引:0,他引:1  
应用有机、无机(矿物)控释材料对化学钾肥(KCl)进行化学改性,制备出长效有机、无机(矿物)改性钾肥。有机、无机(矿物)改性钾肥具有长效性,盆栽试验表明,改性钾肥对第二作玉米幼苗具有显著的增产作用。X射线衍射表明,改性钾肥的结构变化与改性材料层间域的性质、改性材料与化学钾肥的适当比例及改性反应的物理化学条件有关。化学氯化钾肥的红外光谱较弱,且有一高分子包膜层。经有机、无机改性后,高分子包膜层被破坏,这层包膜层的破坏并没有降低改性钾肥钾的有效性,相反,有机、无机(矿物)的非包膜控释作用比高分子包膜层更具长效性。  相似文献   

16.
Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years. In fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological,biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions.Recent discoveries of many transporters and channels for nitrate, phosphate and potassium up take have opened upopportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels. In addition, the functions and regulation of some important transporters and channels are particularly emphasized.  相似文献   

17.
A. Tanaka 《Plant and Soil》1966,25(2):201-210
Summary The differences in fertilizer responses between rice plants grown under pot and field conditions were discussed.Under pot conditions, the rice plant responded more strongly to nitrogen applications at high phosphorus and high potassium levels than at low levels of these elements. This suggests that the balance of nitrogen, phosphorus, and potassium is an important factor in fertilizer application.Under field population conditions, however, mutual shading among plants limits grain yield. A big leaf area above a certain limit is associated with decreased grain yield. The response to nitrogen may be negative, and may not be changed even with the application of potassium and phosphorus.  相似文献   

18.
Research on potassium in agriculture: needs and prospects   总被引:13,自引:0,他引:13  
This review highlights future needs for research on potassium (K) in agriculture. Current basic knowledge of K in soils and plant physiology and nutrition is discussed which is followed by sections dealing specifically with future needs for basic and applied research on K in soils, plants, crop nutrition and human and animal nutrition. The section on soils is devoted mainly to the concept of K availability. The current almost universal use of exchangeable K measurements obtained by chemical extraction of dried soil for making fertilizer recommendations is questioned in view of other dominant controlling factors which influence K acquisition from soils by plants. The need to take account of the living root which determines spatial K availability is emphasized. Modelling of K acquisition by field crops is discussed. The part played by K in most plant physiological processes is now well understood including the important role of K in retranslocation of photoassimilates needed for good crop quality. However, basic research is still needed to establish the role of K from molecular level to field management in plant stress situations in which K either acts alone or in combination with specific micronutrients. The emerging role of K in a number of biotic and abiotic stress situations is discussed including those of diseases and pests, frost, heat/drought, and salinity. Breeding crops which are highly efficient in uptake and internal use of K can be counterproductive because of the high demand for K needed to mitigate stress situations in farmers’ fields. The same is true for the need of high K contents in human and animal diets where a high K/Na ratio is desirable. The application of these research findings to practical agriculture is of great importance. The very rapid progress which is being made in elucidating the role of K particularly in relation to stress signalling by use of modern molecular biological approaches is indicative of the need for more interaction between molecular biologists and agronomists for the benefit of agricultural practice. The huge existing body of scientific knowledge of practical value of K in soils and plants presents a major challenge to improving the dissemination of this information on a global scale for use of farmers. To meet this challenge closer cooperation between scientists, the agrochemical industry, extension services and farmers is essential.  相似文献   

19.
Summary This experiment examined the feasibility of predicting K uptake in white clover by the use of simple and relatively rapid tests that would dispense with the need of knowing the quantity of plant available potassium. Potassium uptake was found to correlate highly (R=>0.9) in linear bivariate regressions using K concentration in the soil solution displaced by centrifuging and an empirical estimate of potassium retention. There was no advantage in determining activity ratios because in at least some of the soils used the ratio law did not apply. Exchangeable potassium alone correlated rather poorly with uptake except at very low soil potassium status. This was not because nonexchangeable potassium was an important source of this nutrient to white clover but because of the large differences in the retention of K amongst the soils used.  相似文献   

20.
The release of nonexchangeable potassium by the different particle size fractions of two soils was studied with a culture device designed to confine soil samples in the rhizosphere of rape (Brassica napus cv Drakkar). After 8 days of cropping, the contribution of nonexchangeable K to K uptake ranged from 50% in the fine clay to 80–100% in the coarser fractions. Due to their high supplying power and their relative abundance, the silt fractions provided a major part of the supply of K by these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号