首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of oxidants, electrophiles, and NO donors in rat or human erythrocytes was analyzed to investigate the influence of protein sulfhydryl groups on the metabolism of these thiol reactants. Oxidant-evoked alterations in thiolic homeostasis were significantly different in the two models; large amounts of glutathione protein mixed disulfides were produced in rat but not in human erythrocytes by treatment with hydroperoxides or diamide. The disappearance of all forms of glutathione (reduced, disulfide, protein mixed disulfide) was induced by menadione only in human erythrocytes. The treatment of rat red blood cells with electrophiles produced glutathione S-conjugates to a much lower extent than in human red blood cells; GSH was only minimally depleted in rat red blood cells. The NO donor S-nitrosocysteine induced a rapid transnitrosation reaction with hemoglobin in rat erythrocytes producing high levels of S-nitrosohemoglobin; this reaction in human red blood cells was negligible. All drugs were cleared more rapidly in rat than in human erythrocytes. Unlike human Hb, rat hemoglobin contains three families of protein SH groups; one of these located at position beta125 is directly implicated in the metabolism of thiol reactants. This is thought to influence significantly the biochemical, pharmacological, and toxicological effects of some drugs.  相似文献   

2.
The main metabolic properties of human red blood cells (RBC) overloaded with glucose catabolizing enzymes such as hexokinase and glucose oxidase were evaluated. Human erythrocytes loaded with human hexokinase metabolized 3.1 +/- 0.2 mumol/h/ml RBC of glucose, an amount double that consumed by normal and unloaded cells (1.46 +/- 0.16 mumol/h/ml RBC), while glucose oxidase-loaded erythrocytes consumed up to 5.5 +/- 0.5 mumol/h/ml RBC of glucose but with a time-dependent increase in methemoglobin formation due to the H2O2 produced in the glucose oxidase reaction. This methemoglobin production was greatly reduced while glucose consumption was increased (8.1 +/- 0.4 mumol/h/ml RBC) by coentrapment of hexokinase and glucose oxidase. Similar results were obtained in mouse red blood cells, although the role of hexokinase was less pronounced due to a higher basal level of this enzyme. When administered to diabetic mice the hexokinase/glucose oxidase-overloaded erythrocytes had a circulating half-life of 5 days and were able to regulate blood glucose at near physiological levels. A single intraperitoneal administration of 500 microliters of enzyme-loaded cells maintained a near-normal blood glucose concentration for 7 +/- 1 days, while repeated administrations at 10-day intervals were effective in the regulation of blood glucose levels for several weeks. These results suggest that enzyme-loaded erythrocytes can behave as circulating bioreactors and can provide a new way to reduce abnormally elevated blood glucose.  相似文献   

3.
Human red blood cells were overloaded with homogeneous human hexokinase using a procedure of encapsulation based on hypotonic hemolysis and isotonic resealing and reannealing to achieve a final activity that was 15 times higher than that in control cells. Storage for 5 weeks at 4 degrees C of hexokinase-overloaded erythrocytes shows that these cells undergo small K+ leakage and mean cell volume increase compared with control cells. Furthermore, after these 5 weeks of storage the 2,3-bisphosphoglycerate content was normal while the ATP concentration was slightly reduced. These results and other properties suggest that encapsulation of key glycolytic enzymes in erythrocytes can provide a new way to maintain in vitro functionally active red blood cells for at least 5 weeks.  相似文献   

4.
The prooxidative effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) were observed in human erythrocytes. Incubation of red blood cells with the membrane-permeable TEMPO leads to a decrease in the concentration of intracellular reduced glutathione, accompanied by the reduction of TEMPO. Extracellular ferricyanide inhibited the loss of glutathione and reduction of TEMPO. TEMPO induced glutathione release from the cells and oxidation of hemoglobin to methemoglobin; ferricyanide prevented these effects. These results indicate that TEMPO may act as an oxidant to erythrocytes, whilst extracellular ferricyanide protects against its effects.  相似文献   

5.

Background

All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls.

Methods

We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[15N2]arginine conversion to L-[15N]citrulline respectively.

Results

Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity.

Conclusion

Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress.  相似文献   

6.
The oxidative state of glutathione in red blood cells (RBC) and plasma of diabetic patients and of age-matched volunteers has been studied. Oxidized glutathione (GSSG) levels in plasma from diabetic subjects were higher than those from controls (17.2 +/- 2.5 and 3.3 +/- 0.4 micrograms/ml, respectively). This phenomenon was evident also in in vitro experiments: incubated RBC from diabetic patients released very high amounts of GSSG in medium. Thus, erythrocytes are responsible for the enhanced amounts of GSSG found in plasma from diabetic patients. The fall in the conversion of GSSG to reduced glutathione in RBC could be due to a reduced activity of the glucose-6-phosphate dehydrogenase (G6PDH) enzyme which has been observed in diabetic patients. In this way, G6PDH supplies reduced amounts of NADPH to the glutathione reductase enzyme affecting the integrity of the glutathione system; on the other hand, the activation by glucose of the polyol pathway also reduces the levels of NADPH for the glutathione reductase enzyme.  相似文献   

7.
The possible mechanisms underlying the acquisition of an increased ascorbic acid content by mouse erythrocytes containing the malarial parasite Plasmodium vinckei were investigated. Ascorbic acid was taken up readily by parasitized red blood cells but not by controls, whilst its partly oxidized form, dehydroascorbic acid, entered both. The uptake of both ascorbic acid and dehydroascorbic acid into erythrocytes was increased as a result of malarial infection. Lysates prepared from parasitized red blood cells reduced exogenous dehydroascorbic acid to ascorbic acid at a higher rate than control red blood cell lysates; this difference was abolished following dialysis of the lysates, a process which removes endogenous reduced glutathione (GSH). The rates of chemical and enzymatic reduction of dehydroascorbic acid to ascorbic acid by GSH were of similar magnitude, thus calling into question the existence of a specific dehydroascorbate reductase in erythrocytes and parasites. These observations suggest that the increased uptake of dehydroascorbic acid into parasitized red blood cells may be a result of enhanced dehydroascorbate-reducing capacity, whilst the presence of the parasite induces a selective increase in the permeability of the erythrocyte plasma membrane to ascorbic acid. The endogenous ascorbic acid content of livers obtained from infected mice was 55% below the normal concentration and its relative rate of destruction during incubation in vitro was enhanced in comparison with that of control livers. Furthermore, the capacity of liver homogenates to synthesize ascorbic acid from glucuronic acid was greatly reduced in infected mice. Therefore it is unlikely that the increase in ascorbic acid content of parasitized red blood cells is a consequence of increased biosynthesis and release of ascorbic acid by the host liver. We have not been able to exclude the possibility that the malarial parasite itself may be capable of de novo synthesis of ascorbic acid.  相似文献   

8.
The true level of hexokinase in rabbit erythrocytes was determined by three different methods, including the spectrophotometric glucose-6-phosphate dehydrogenase coupled assay and a new radioisotopic assay. The value found at 37°C (pH 7.2) was 10.23±1.90 μmol/h per ml red blood cells, which is lower than previously reported values. More than 40 cellular components of the rabbit erythrocytes were tested for their effects on the enzyme. Their intracellular concentrations were also determined. Several of these compounds were found to be competitive inhibitors of the enzyme with respect to Mg·ATP2?. Furthermore, reduced glutathione at a concentration of 1 mM was able to maintain hexokinase in the reduced state with full catalytic activity. The ability of orthophosphate to remove the inhibition of some phosphorylated compounds was examined under conditions similar to cellular (pH 7.2 and 50 μM of orthophosphate) and found to be of no practical interest. In contrast, the binding of ATP4? and 2,3-diphosphoglycerate to the rabbit hemoglobin significantly modifies their intracellular concentrations and the formation of the respective Mg complexes. The pH-dependence of the reaction velocity and of the kinetic properties of the enzyme in different buffer systems were also considered. This information was computerized, and the rate of glucose phosphorylation in the presence of the mentioned compounds was determined. The value obtained, 1.94±0.02 μmol/h per ml red blood cells, is practically identical to the measured rate of glucose utilization by intact rabbit erythrocytes (1.92±0.3 μmol/h per ml red blood cells). These results provide further evidence for the central role of hexokinase in the regulation of red blood cell glycolysis.  相似文献   

9.
The regulatory properties of pig erythrocyte hexokinase III have been studied. Among mammalian erythrocyte hexokinases, the pig enzyme shows the highest affinity for glucose and a positive cooperative effect with nH = 1.5 at all the MgATP concentrations studied (for 0.5 to 5 mm). Glucose at high concentrations is also an inhibitor of hexokinase III. Similarly, the apparent affinity constant for MgATP is independent of glucose concentration. Uncomplexed ATP and Mg are both competitive inhibitors with respect to MgATP. Glucose 6-phosphate, known as a stronger inhibitor of all mammalian erythrocyte hexokinases, is a poor inhibitor for the pig enzyme (Ki = 120 μm). Furthermore, this inhibition is not relieved by orthophosphate as with other mammalian red blood cell hexokinases. A variety of red blood cell-phosphorylated compounds were tested and found to be inhibitors of pig hexokinase III. Of these, glucose 1,6-diphosphate and 2,3-diphosphoglycerate displayed inhibition constants in the range of their intracellular concentrations. In an attempt to investigate the role of hexokinase type III in pig erythrocytes some metabolic properties of this cell have been studied. The adult pig erythrocyte is able to utilize 0.27 μmol of glucose/h/ml red blood cells (RBC) compared with values of 0.56–2.85 μmol/h/ml RBC for the other mammalian species. This reduced capacity to metabolize glucose results from a relatively poor ability of the cell membrane to transport glucose. In fact, all the glycolytic enzymes were present and a low intracellular glucose concentration was measured (0.5 mm against a plasma level of 5 mm). Furthermore, transport and utilization were concentration-dependent processes. Inosine, proposed as the major energy substrate of the pig erythrocyte, at physiological concentrations is not as efficient as glucose in maintaining reduced glutathione levels under oxidative stress. Furthermore, newborn pig erythrocytes (fully permeable to glucose) possess hexokinase type II as the predominant glucose-phosphorylating activity. This fact and the information derived from the study of the regulatory characteristics of hexokinase III and from metabolic studies on intact pig erythrocytes permit the hypothesis that the presence of this peculiar hexokinase isozyme (type III) enables the adult pig erythrocyte to metabolize low but appreciable amounts of glucose.  相似文献   

10.
Erythrocyte glutathione reductase is responsible for generating reduced glutathione, which has been implicated in maintaining the integrity of the red blood cell.Erythrocytes from peripheral blood were separated into fractions of increasing age and the activity of glutathione reductase and aspartate amino transferase determined in each fraction.The age-related decline in activity of both enzymes was confirmed, but with detailed resolution of the cells by age a significant secondary rise in only glutathione reductase activity was found in very old cells. As red blood cells from the same cohort survive in the circulation for varying periods they must vary in some way from one another. It is postulated that glutathione reductase is a critical enzyme which limits erythrocyte survival and that the rate of decline in activity varies from cell to cell. A simple mathematical model based on this postulate accounted quantitatively for both the pattern of glutathione reductase activity and the erythrocyte survival curve. In addition, a simplified model of the passage of erythrocytes through the circulation was designed and run. The predicted erythrocyte survival curve and pattern of glutathione reductase activity were very similar to observed patterns. This model may be useful in other situations where a finite resource is degraded at different rates by random passages through different pathways.  相似文献   

11.
1. The J blood group activity of red cells is measured in terms of 50% haemolysis ('direct test'), that of dissolved or suspended samples in terms of 50% haemolysis inhibition ('indirect test') in a standardized bovine J system. 2. The volume of J-containing sample required for a 50% haemolysis inhibition decreases with increasing J activity. 3. The volume of anti-J required for a 50% haemolysis of J-positive erythrocytes also decreases with increasing J activity. 4. The use of antigen units (UAg) was introduced to serve as a measure of J activity of dissolved or suspended samples. 5. Antigen units were also used to characterize J-containing red cells. This was made possible by measuring the relation of the direct test (on red cells). Thus, a relatively simple method of determination of red cell UAg is obtained. 6. It was confirmed by absorption experiments that erythrocytes containing high concentrations of antigen require relatively low amounts of antibody to bring about a 50% haemolysis, but are able to bind a relatively high excess of antibody.  相似文献   

12.
The optimal transmission of very diluted blood samples from 11 vertebrate species and man were measured. The red cells of 10 species reduced their volume when glucose or equi-osmotic amounts of sodium chloride were added. Only the erythrocytes of man and monkey (Japanese macaques) did not reduce their volume after addition of glucose or renormalized or overcompensated minor transitory changes. This increase of the volume of human red cells is, however, too low for noticeable viscosity changes of whole blood to be caused, if any. The different response of red cells to glucose makes a simple differentiation between animal and human blood samples possible, provided that primates other than man are excluded.  相似文献   

13.
In vitro distribution of aluminium between plasma and erythrocytes has been studied in the presence of variable amounts of sodium L-glutamate. With a red blood cell suspension in isotonic sodium chloride, aluminium remains confined in erythrocytes even when the sodium L-glutamate concentration increases in the medium. Aluminium initially present in plasma penetrates red blood cells when sodium L-glutamate increases in whole blood, showing that this metal is able in vitro to cross the erythrocyte membrane as glutamate complex. In vivo experiments with male Wistar rats prove that aluminium is also able to pass the blood--brain barrier as glutamate complex and deposit in the brain cortex.  相似文献   

14.
The effect of Legalon was investigated parallel with that of Adriblastina (doxorubicin) and paracetamol on some parameters characterizing the free radical scavenger mechanisms of human erythrocytes in vitro and on the time of acid hemolysis performed in aggregometer. Observations suggest that Adriblastina enhances the lipid peroxidation of the membrane of red blood cells, while paracetamol causes significant depletion of intracellular glutathione level, thus decreasing the free radical eliminating capacity of the glutathione peroxidase system. Legalon on the other hand, is able to increase the activity of both superoxide dismutase and glutathione peroxidase, which may explain the protective effect of the drug against free radicals and also the stabilizing effect on the red blood cell membrane, shown by the increase of the time of full haemolysis.  相似文献   

15.
The oxidative effects of sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs, were investigated in vitro using three types of canine erythrocytes, which are differentiated by the concentration of reduced glutathione and the composition of intracellular cations. After incubation with sodium n-propylthiosulfate, the methemoglobin concentration and Heinz body count in all three types of erythrocytes increased and a decrease in the erythrocyte reduced glutathione concentration was then observed. The erythrocytes containing high concentrations of potassium and reduced glutathione (approximately five times the normal values) were more susceptible to oxidative damage by sodium n-propylthiosulfate than were the normal canine erythrocytes. The susceptibility of the erythrocytes containing high potassium and normal reduced glutathione concentrations was intermediate between those of erythrocytes containing high concentrations of potassium and reduced glutathione and normal canine erythrocytes. In addition, the depletion of erythrocyte reduced glutathione by 1-chloro-2, 4-dinitrobenzene resulted in a marked decrease in the oxidative injury induced by sodium n-propylthiosulfate in erythrocytes containing high concentrations of potassium and reduced glutathione. The generation of superoxide in erythrocytes containing high concentrations of potassium and reduced glutathione was 4.1 times higher than that in normal canine erythrocytes when the cells were incubated with sodium n-propylthiosulfate. These observations indicate that erythrocyte reduced glutathione, which is known as an antioxidant, accelerates the oxidative damage produced by sodium n-propylthiosulfate.  相似文献   

16.
The morphological and metabolic properties of red blood cells submitted to the procedure of loading by hypotonic hemolysis and isotonic resealing were compared with the controls. No appreciable differences could be detected concerning glycolytic ability, the amount of glucose metabolized in the hexose monophosphate pathway and the concentrations of glycolytic intermediates of ATP and of 2,3-DPG. Instead the concentration of reduced glutathione and the MCV were slightly reduced. These manipulated erythrocytes can be used as potential bioreactors or as carriers of exogenous substances.  相似文献   

17.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

18.
Enzymatic oxidation of mercury vapor by erythrocytes   总被引:1,自引:0,他引:1  
The formation of glutathione radicals, the evolution of nascent oxygen or the peroxidatic reaction with catalase complex I are considered as possible mechanisms for the oxidation of mercury vapor by red blood cells. To select among these, the uptake of atomic mercury by erythrocytes from different species was studied and related to their various activities of catalase (hydrogenperoxide : hydrogen-peroxide oxidoreductase, EC 1.11.1.6) and glutathione peroxidase (glutathione : hydrogen-peroxide oxidoreductase, EC 1.11.1.9). A slow and continuous infusion of diluted H2O2 was used to maintain steady concentrations of complex I. 1% red cell supsensions were found most suitable showing high rates of Hg uptake and yielding still enough cells for subsequent determinations. The results indicate that the oxidation of mercury depends upon the H2O2-generation rate and upon the specific acticity of red-cell catalase. The oxidation occurred in a range of the catalase-H2O2 reaction where the evolution of oxygen could be excluded. Compounds reacting with complex I were shown to be effective inhibitors of the mercury uptake. GSH-peroxidase did not participate in the oxidation but rather, was found to inhibit it by competing with catalase for hydrogen peroxide. These findings support the view that elemental mercury is oxidized in erythrocytes by a peroxidatic reaction with complex I only.  相似文献   

19.
Aqueous solutions of dextran and of polyethylene glycol when mixed form immiscible liquid two-phase systems with a polyethylene glycol-rich top and a dextran-rich bottom. Such phases can be buffered and rendered isotonic and are suitable for the partition of cells. The partition coefficient of cells (i.e., their relative affinity for the top or bottom phase or their adsorption at the interface) depends on the polymer concentrations, on the ionic composition and concentration and, most sensitively, on their membrane surface properties. When two cell populations are mixed the partition coefficient of each is unaffected by the presence of the other population unless an interaction takes place between them. By countercurrent distribution of two cell populations, in a phase system selected such that the partition coefficient of one population is high (i.e., more cells in the top phase) and of the other low, one should be able to detect subtle interactions between cells in the two populations should they occur. Results of experiments with a model system consisting of human peripheral blood mononuclear cells and sheep red blood cells bear out the feasibility of this approach. At low ratios of sheep erythrocytes to mononuclear cells no interaction is apparent. With increasing ratios there is an increasing shift in the distribution curve of subpopulations of mononuclear cells (i.e., T-lymphocytes) as they interact with the sheep red cells. Substitution of rabbit red cells for sheep erythrocytes (at high ratios) reveals a small yet significant shift of a subpopulation of mononuclear cells as well. Distribution of human peripheral blood lymphocytes from patients with chronic lymphocytic leukemia (all B-lymphocytes) are essentially unaffected by the presence of sheep red cells. This sensitive new method, still in its infancy, holds out the hope for the detection of previously unknown cell-cell affinities and for probing suspected cell-cell interactions.  相似文献   

20.
  • 1 The J blood group activity of red cells is measured in terms of 50 % haemolysis (‘direct test’), that of dissolved or suspended samples in terms of 50 % haemolysis inhibition (‘indirect test’) in a standardized bovine J system.
  • 2 The volume of J-containing sample required for a 50% haemolysis inhibition decreases with increasing J activity.
  • 3 The volume of anti-J required for a 50% haemolysis of J-positive erythrocytes also decreases with increasing J activity.
  • 4 The use of antigen units (UAg) was introduced to serve as a measure of J activity of dissolved or suspended samples.
  • 5 Antigen units were also used to characterize J-containing red cells. This was made possible by measuring the relation of the direct test (on red cells). Thus, a relatively simple method of determination of red cell UAg is obtained.
  • 6 It was confirmed by absorption experiments that erythrocytes containing high concentrations of antigen require relatively low amounts of antibody to bring about a 50 % haemolysis, but are able to bind a relatively high excess of antibody.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号