首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
After mechanical destruction of the receptor apparatus, application of focused ultrasound (frequency 2.34 mHz) to the auditory fibers of the frog elicited the electrical activity in the auditory midbrain centers (torus semicircularis). Action potentials evoked by focused ultrasound were similar to those evoked by activation of the intact contralateral labyrinth. After introduction of horseradish peroxidase into the destroyed auditory capsule, fibers activated by ultrasound were detected. Therefore electrophysiological and histochemical experiments reveal stimulating effect of focused ultrasound on the auditory fibers of the VIIIth nerve.  相似文献   

2.
罗艳  严碧歌 《生物磁学》2008,(10):1995-1998
文中就超声波热疗,高强度聚焦超声以及低频超声波在肿瘤治疗中的应用进行了描述。早期主要是利用超声波的热效应来治疗肿瘤,近年来兴起的高强度聚焦超声是热疗法的另一发展。它瞬间使肿瘤组织温度升至65℃以上,导致靶区组织凝固和坏死来达到对肿瘤的“热切除”,是一种安全、有效的肿瘤治疗手段,具有无限潜力。尽管低频超声治疗肿瘤的机制尚不明了,但因其可以诱导细胞凋亡,为肿瘤的治疗提供了新的途径,其治疗作用已受到重视。  相似文献   

3.
Threshold electrical reactions of single fibers from the ischiadic nerve of rats to mechanical stimulation and rectangle impulses of focused ultrasound have been compared with respect to the parameters of stimulation to the effect of focused ultrasound on the skin of human fingers evoking different sensations. It was concluded that low-threshold fibers may be associated with tactile reception, mean-threshold ones--with tactile and thermal, whereas high-threshold fibers may be referred to reception of specific skin pain.  相似文献   

4.
Zhang S  Cheng J  Qin YX 《PloS one》2012,7(6):e38343
Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm(2), suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.  相似文献   

5.
经颅聚焦超声是一种有效的神经调控技术,具有非侵入性、聚焦靶点多和焦点可调控等优势。但由于颅骨的强声衰减和非均质特性,聚焦超声经颅后存在焦点偏移、焦域能量不足以及颅骨烫伤等问题。多阵元超声相控阵可以修正超声经颅后的相位偏差和幅值衰减,实现准确、有效的颅内聚焦。本文首先介绍了换能器的阵元排布方式,进一步归纳了相控阵激励信号的调控方法,最后对其基础研究和临床应用进行了回顾与展望。  相似文献   

6.
目的研究聚焦超声辐射涌泉穴对血脂的影响.方法采用高脂饲料喂养建立高血脂大鼠模型,通过聚焦超声辐射高血脂模型大鼠涌泉穴,测定大鼠血清总胆固醇(tota cholesterol, TC)、甘油三脂 (triacylglycerol, TG)、高密度脂蛋白胆固醇(high density lipoprotein, HDL-c)和低密度脂蛋白胆固醇(low density lipoprotein, LDL-c)等指标.结果检测血清TC、TG、HDL-C、LDL-C水平,聚焦超声辐照涌泉穴可明显降低高血脂模型大鼠血清TC、TG(P<0.05),而超声治疗组和针刺组无明显差异.结论聚焦超声辐射高血脂大鼠的涌泉穴位,可明显降低TC、TG,有调节血脂的作用.  相似文献   

7.
The action of low-frequency ultrasound on the body has been shown to lead to the stimulation of specific immune response, as well as immunological memory cells. The effects of low-frequency ultrasound are seemingly realized through the macrophage system of immunity, i. e. the action of ultrasound leads to the stimulation of the functional activity of macrophages, their metabolism, while blocking the macrophage system of immunity with carraginal abolishing the effects of ultrasound.  相似文献   

8.
Several recent studies bring evidence of cell death enhancement in photodynamic compound loaded cells by ultrasonic treatment. There are a number of hypotheses suggesting the mechanism of the harmful ultrasonic effect. One of them considers a process in the activation of photosensitizers by ultrasonic energy. Because the basis of the photodynamic damaging effect on cells consists in the production of reactive oxygen species (ROS), we focused our study on whether the ultrasound can increase ROS production within cancer cells. Particularly, we studied ROS formation in ultrasound pretreated breast adenocarcinoma cells during photodynamic therapy in the presence of chloroaluminum phthalocyanine disulfonate (ClAlPcS2). Production of ROS was investigated by the molecular probe CM-H2DCFDA. Our results show that ClAlPcS2 induces higher ROS production in the ultrasound pretreated cell lines at a concentration of 100 microM and light intensity of 2 mW/cm2. We also observed a dependence of ROS production on photosensitizer concentration and light dose. These results demonstrate that the photodynamic effect on breast cancer cells can be enhanced by ultrasound pretreatment.  相似文献   

9.
1. An efficient generator of focused ultrasound has been designed, built, and successfully operated. 2. The generator has been used to produce focal heating in the centers of paraffin blocks, and in a similar manner, focal areas of destruction were obtained deep in fresh liver tissue with minimal effects at the surface and no effects on the intervening tissue. 3. In animals, focused ultrasound of high intensity produced local cerebral changes as inferred from behavior disabilities and as demonstrated at autopsy. This local brain effect was achieved through intervening scalp, skull, and meninges. The resulting behavior disabilities disappeared in from 2 to 16 hours. 4. To date, it has not been possible to produce such brain changes without incidental injury to the skin and subcutaneous tissue lying at the base of the cone of radiation. 5. Improvements in generation and application of the focused supersonic beam are suggested whereby it should be possible to increase still further the focal effects in the brain, with a corresponding decrease or elimination of complicating surface injury.  相似文献   

10.
The syntheses of some new chalcogenazole 1 and chalcogenophene 2, 3 derivatives under conventional Gewald’s conditions [1–4], by the action of ultrasound and focused microwave irradiation is reported. It was found that although ultrasound accelerated the described reaction significantly, the focused microwave irradiation manifested itself even more significantly.  相似文献   

11.
计算了凹球面自聚焦超声源和聚焦高斯超声源在生物媒质中产生的声场及温度场,并对其主要特征进行了分析。比较了不同条件下此两种聚焦超声源用于热疗时的有效治疗区及声焦点处的升温快慢,揭示了它们对生物组织加热作用的差异,证实最大温升主要取决于最大声吸收率。  相似文献   

12.

Background  

The Blood Brain Barrier (BBB) maintains the homeostasis of central nervous system by preventing the free passage of macromolecules from the systemic circulation into the brain. This normal physiological function of the BBB presents a challenge for delivery of therapeutic compounds into the brain. Recent studies have shown that the application of focused ultrasound together with ultrasound contrast agent (microbubbles) temporarily increases the permeability of the BBB. This effect is associated with breakdown of tight junctions, the structures that regulate the paracellular permeability of the endothelial cell layer. The influence of this ultrasound effect on the activation of intracellular signaling proteins is currently not well understood. Therefore, the aim of this study was to investigate the activation of cell survival signaling molecules in response to ultrasound-mediated BBB opening;  相似文献   

13.
The high intensity focused ultrasound (HIFU) technology can produce therapeutic benefits in deep-seated tissues of interest, selectively and noninvasively. In order to control the treatment process, it is important to recognize the heat generation in biological tissue and the parameters that have an effect on temperature rising. This study investigates the influence of frequency and source intensity on temperature distribution during high-intensity focused ultrasound (HIFU). A nonlinear full wave equation model is simulated to compute the pressure field. Additionally, the absorbed coefficient of tissue is added to the nonlinear equations to simulate accurately the wave propagation in tissue with high absorbed coefficient. In addition, temperature distribution was solved by the Pennes bio-heat equation. Conclusively, frequencies in the range of 1–1.5 MHz are prescribed to have maximum heat absorption in the focal region.  相似文献   

14.
Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), are promising therapeutic agents for neurodegenerative diseases. However, the application of GDNF to treat these diseases effectively is limited because the blood–brain barrier (BBB) prevents the local delivery of macromolecular therapeutic agents from entering the central nervous system (CNS). Focused ultrasound combined with microbubbles (MBs) using appropriate parameters has been previously demonstrated to be able to open the BBB locally and noninvasively. This study investigated the targeted delivery of GDNF MBs through the BBB by magnetic resonance imaging (MRI)-guided focused ultrasound. Evans Blue extravasation and histological examination were used to determine the optimum focused ultrasound parameters. Enzyme-linked immunosorbent assay was performed to verify the effects of GDNF bound on MBs using a biotin–avidin bridging chemistry method to promote GDNF delivery into the brain. The results showed that GDNF can be delivered locally and noninvasively into the CNS through the BBB using MRI-guided focused ultrasound combined with MBs under optimum parameters. MBs that bind GDNF combined with MRI-guided focused ultrasound may be an effective way of delivering neurotrophic factors directly into the CNS. The method described herein provides a potential means of treating patients with CNS diseases.  相似文献   

15.
Short interfering RNA (siRNA) has attracted much attention for clinical use in various diseases. However, its delivery, especially through the cell membrane, continues to present a challenge. Advances in ultrasound- and ultrasound contrast-agent technologies have made it possible to change transiently the permeability of the cell membrane and, using a focused ultrasound transducer, to narrow and focus the ultrasound energy on a small target, thereby avoiding damage to surrounding tissue. In this in vitro study, we demonstrate that it is possible to deliver siRNA intracellularly via microbubble-enhanced focused ultrasound. Although further optimization is necessary, our novel method for siRNA transduction represents a powerful tool for using siRNA in vivo and possibly in the clinical setting.  相似文献   

16.
Therapeutic applications of ultrasound predate its use in imaging. A range of biological effects can be induced by ultrasound, depending on the exposure levels used. At low levels, beneficial, reversible cellular effects may be produced, whereas at high intensities instantaneous cell death is sought. Therapy ultrasound can therefore be broadly divided into “low power” and “high power” applications. The “low power” group includes physiotherapy, fracture repair, sonophoresis, sonoporation and gene therapy, whereas the most common use of “high power” ultrasound in medicine is probably now high intensity focused ultrasound. Therapeutic effect through the intensity spectrum is obtained by both thermal and non-thermal interaction mechanisms. At low intensities, acoustic streaming is likely to be significant, but at higher levels, heating and acoustic cavitation will predominate. While useful therapeutic effects are now being demonstrated clinically, the mechanisms by which they occur are often not well understood.  相似文献   

17.
Acoustic cavitation induced by continuous focused ultrasound (1.4 W/cm2, 543 Hz) was found to result in reversible membrane depolarization (by 54 mV), loss of excitability and contracture in the rat papillary muscles. The same intensities of impulse ultrasound had positive inotropic effects.  相似文献   

18.
BACKGROUND: Ultrasound/microbubble-mediated gene delivery has the potential to be targeted to tissue deep in the body by directing the ultrasound beam following vector administration. Application of this technology would be minimally invasive and benefit from the widespread clinical experience of using ultrasound and microbubble contrast agents. In this study we evaluate the targeting ability and spatial distribution of gene delivery using focused ultrasound. METHODS: Using a custom-built exposure tank, Chinese hamster ovary cells in the presence of SonoVue microbubbles and plasmid encoding beta-galactosidase were exposed to ultrasound in the focal plane of a 1 MHz transducer. Gene delivery and cell viability were subsequently assessed. Characterisation of the acoustic field and high-resolution spatial analysis of transfection were used to examine the relationship between gene delivery efficiency and acoustic pressure. RESULTS: In contrast to that seen in the homogeneous field close to the transducer face, gene delivery in the focal plane was concentrated on the ultrasound beam axis. Above a minimum peak-to-peak value of 0.1 MPa, transfection efficiency increased as acoustic pressure increased towards the focus, reaching a maximum above 1 MPa. Delivery was microbubble-dependent and cell viability was maintained. CONCLUSIONS: Gene delivery can be targeted using focused ultrasound and microbubbles. Since delivery is dependent on acoustic pressure, the degree of targeting can be determined by appropriate transducer design to modify the ultrasound field. In contrast to other physical gene delivery approaches, the non-invasive targeting ability of ultrasound makes this technology an attractive option for clinical gene therapy.  相似文献   

19.
High-risk types of human papillomavirus (HPV), such as HPV16, have been found in nearly all cases of cervical cancer. Therapies targeted at blocking the HPV16 E6 protein and its deleterious effects on the tumour suppressor pathways of the cell can reverse the malignant phenotype of affected keratinocytes while sparing uninfected cells. Through a strong interdisciplinary collaboration between engineering and biology, a novel, non-invasive intracellular delivery method for the HPV16 E6 antibody, F127-6G6, was developed. The method employs high intensity focused ultrasound (HIFU) in combination with microbubbles, in a process known as sonoporation. In this proof of principle study, it was first demonstrated that sonoporation antibody delivery into the HPV16 positive cervical carcinoma derived cell lines CaSki and SiHa was possible, using chemical transfection as a baseline for comparison. Delivery of the E6 antibody using sonoporation significantly restored p53 expression in these cells, indicating the antibody is able to enter the cells and remains active. This delivery method is targeted, non-cytotoxic, and non-invasive, making it more easily translatable for in vivo experiments than other transfection methods.  相似文献   

20.
Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200‐MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press‐focused (PF) transducer and zinc oxide self‐focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 µm two‐dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. Biotechnol. Bioeng. 2013; 110: 881–886. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号