首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
"北京早红"番茄(Lycopersicon esculentum)X秘鲁番茄(L. peruvianum )PI,128657中的8号株系杂交后杂种种子不能正常发育的原因观察。结果表明,杂种胚和胚乳发育缓 慢。授粉后16天胚乳开始退化。杂种胚的分裂是随机的,没有经历正常的发育阶段。.授粉后30天杂种胚开始退化,35天完全解体。投粉后4天有些珠被绒毡层出现增生。  相似文献   

2.
“北京早红”番茄(Lycopersicon esculentum)×秘鲁番茄(L.peruvianum)PI,128657中的8号株系杂交后杂种种子不能正常发育的原因观察。结果表明,杂种胚和胚乳发育缓慢。授粉后16天胚乳开始退化。杂种胚的分裂是随机的,没有经历正常的发育阶段。授粉后30天杂种胚开始退化,35天完全解体。授粉后4天有些珠被绒毡层出现增生。  相似文献   

3.
普通小麦(2n=6x=42)品种及其杂种F_1为母本与四倍体球茎大麦(2n=4x=28)杂交,发现属间杂交的受精过程和胚胎生长发育比小麦自交时缓慢。球茎大麦花粉给小表授粉后4小时精子进入卵接触卵核,6小时初生胚乳核开始形成。杂合子第一次有丝分裂和授粉后22小时胚乳核的分裂中出现染色体落后及微核,授粉后9天胚乳核出现解体现象,10天后幼胚局部细胞也出现解体。13天后胚囊成为空腔,已观察不到细胞轮廓。在北京田间于授粉后9—10日即须将幼胚离体培养。  相似文献   

4.
栽培大麦×普通小麦杂种发育的胚胎学观察   总被引:4,自引:0,他引:4  
对大麦与小麦远缘杂交时雌雄性核的结合及杂种胚和胚乳的发育情况进行了观察。大、小麦杂交时,可发生双受精作用、单受精作用,或受精过程失败。单受精作用发生的时间参差不齐。大小麦杂种胚的发育进程最初与大麦自交时情况相似。以后胚发育缓慢,并长期停留在原胚阶段。在授粉后12—15天,原胚发育达到高峰。仅有个别杂种胚在授粉后第18、19天进入胚分化,且胚分化不完善。同时,在整个发育过程中,原胚不时出现解体退化现象。杂种胚乳的发育仅在最初阶段形成若干游离核,此后胚乳组织转向退化。在授粉10天以后的子房中,未检查到胚乳或胚乳解体后的残留物。  相似文献   

5.
本试验以206小麦为母本,二棱大麦旱燕3号和六棱大麦原早1号为父本进进杂交。结果表明,两个组合早期的胚胎发育基本上是正常的,前者成胚率为8.75%,后者为16.8%。胚乳核最早于授粉后3天开始形成细胞。当胚乳细胞充满囊后,很快就转入迅速解体,胚随即停止生长,没有能够进一步分化出器官来。胚乳于授粉15天后,几乎全部败育,胚亦相继夭亡。胚胎发育过程中的不正常现象普遍存在。主要是极核受精过程遭受破坏;合子和初生胚乳核发育停滞;原胚虽能正常发育而胚乳没有形成;胚乳细胞过早形成和迅速解体等。讨论了杂交不孕和胚乳败育的原因。同时,提出了幼胚离体培养的适宜时间。  相似文献   

6.
本试验以206小麦为母本,二棱大麦旱燕3号和六棱大麦原早1号为父本进进杂交。结果表明,两个组合早期的胚胎发育基本上是正常的,前者成胚率为8.75%,后者为16.8%。胚乳核最早于授粉后3天开始形成细胞。当胚乳细胞充满囊后,很快就转入迅速解体,胚随即停止生长,没有能够进一步分化出器官来。胚乳于授粉15天后,几乎全部败育,胚亦相继夭亡。胚胎发育过程中的不正常现象普遍存在。主要是极核受精过程遭受破坏;合子和初生胚乳核发育停滞;原胚虽能正常发育而胚乳没有形成;胚乳细胞过早形成和迅速解体等。讨论了杂交不孕和胚乳败育的原因。同时,提出了幼胚离体培养的适宜时间。  相似文献   

7.
观察了小麦胚和胚乳初期的发育进程,得到如下结果:授粉后2小时,二个精子已分别进入卵核和极核;6小时,极核已经完成受精,卵核与另一精子的融合正在进行。授粉后24小时为二细胞原胚,6天时部分胚胎开始分化。授粉后3天,胚乳核开始形成细胞,至6天时,胚乳细胞充满胚囊。开花前充分发育的反足细胞授粉后开始解体,第4天已失去细胞结构,仅留下核仁和染色质团块,第8天几乎完全消失。在珠心、胚乳、子房壁和原胚以及分化胚的胚柄中都观察到细胞融合现象,而且在原胚附近出现较多。  相似文献   

8.
以棉花栽培种中棉作母本,野生种戴维逊氏棉作父本进行杂交试验,并用中棉自交作对照,比较研究了杂交情况下花粉粒的萌发、花粉管的生长、受精作用及胚和胚乳的发育过程,得到以下结果:(1)中棉×戴维逊氏棉花粉粒的萌发及花粉管在异己花柱中的生长基本正常,有花粉管胚珠的频率约20%,为中棉自交的1/4左右;(2)在杂交情况下,有花粉管进入的胚珠基本上能实现受精;(3)杂种胚乳在授粉后7天发育异常,11天开始解体,16天才有部分胚珠的胚乳开始形成细胞壁;(4)杂种胚不分化或畸形分化,在授粉后11—22天坏死。  相似文献   

9.
利用激光扫描共聚焦显微技术对同源四倍体双胚苗水稻的受精过程、胚胎发育过程和双胚来源进行观察鉴定。研究结果表明,同源四倍体水稻和二倍体水稻在发生受精作用的时间上不存在很大的差异。双胚苗水稻的受精作用和胚胎发育表现出明显的特异性,其双胚苗性状有其胚胎学根源,双胚可能有4种来源,即来源于由双套胚囊形成的双胚、由多卵卵器中的卵细胞和类卵细胞分别通过受精作用形成双胚、由特异性的反足细胞通过异常发育后形成额外的幼胚、由胚乳细胞通过异常发育后形成胚乳型幼胚。通过对试验材料的受精频率及其结实率进行比较后发现,双胚苗水稻具有更弱的有性生殖能力,其遗传可塑性更强,这为离子束介导技术的研究找到了比较好的受体材料。  相似文献   

10.
同源四倍体水稻受精与胚胎形成过程的观察   总被引:8,自引:1,他引:7  
激光扫描共聚焦显微术具有“组织与细胞CT”的功能,可以对整体组织进行扫描并构建三维结构。在水稻胚囊发育研究上建立的整体染色透明激光扫描共聚焦显微术辅助D IC法,对同源四倍体水稻广陆矮4号-4x和L202-4x受精和胚胎发育过程进行了研究,描述授粉后不同时段胚囊发育的特点,发现同源四倍体水稻受精、胚胎和胚乳发育过程及特点与正常的二倍体水稻的基本一致,但在不同发育时段中存在无胚、无胚乳胚囊、胚乳吞噬胚、胚胎发育停滞、胚囊退化等异常。2份材料的异常情况存在差异。这些异常均可能导致结实率降低。  相似文献   

11.
Summary The major concept of fragile X pathogenesis postulates that the fragile site at band Xq27.3 [fra(X)] represents the primary defect. The expression of fra(X) is predicted to be an intrinsic property of the mutated chromosome and, hence, should not be suppressed by X inactivation in females or induced by X-linked trans-acting factors. We made fibroblast clones of a fra(X)-positive female. Monoclonality was demonstrated using the DNA methylation assay at DXS255. The mutated X chromosomes and their states of genetic activity in the different clones were also defined by molecular methods. Five clones were selected to induce expression of fra(X) by 10-7 M FUdR; two carried an active mutated X chromosome, in the other three the mutated X chromosome was inactivated. Fra(X) was found expressed in both types of clones. The percentages of positive cells were as high as 7–10%, regardless of the genetic activity of the mutated X chromosomes. DNA replicating patterns, obtained by BUdR labelling, demonstrated that expression occurred only on the mutated X chromosomes previously identified by molecular methods. The concept that the fragile site represents the primary mutation is now strongly supported by experimental evidence. The expression of fra (X) in females is independent of X inactivation and other trans-acting factors.  相似文献   

12.
Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.  相似文献   

13.
Ueno K  Takai A 《Genetica》2008,132(1):35-41
The karyotype and other chromosomal markers as revealed by C-banding and Ag-staining were studied in Lutjanus quinquelineatus and L. kasmira (Lutjanidae, Perciformes). While in latter species, the karyotype was invariably composed of 48 acrocentric chromosomes in both sexes, in L. quinquelineatus the female karyotype had exclusively 48 acrocentric chromosomes (2n = 48) but that of the male consisted of one large metacentric and 46 acrocentric chromosomes (2n = 47). The chromosomes in the first meiotic division in males showed 22 bivalents and one trivalent, which was formed by an end-to-end association and a chiasmatic association. Multiple sex chromosome system of X1X1X2X2/X1X2Y type resulting from single Robertsonian fusion between the original Y chromosome and an autosome was hypothesized to produce neo-Y sex chromosome. The multiple sex chromosome system of L. quinquelineatus appears to be at the early stage of the differentiation. The positive C-banded heterochromatin was situated exclusively in centromeric regions of all chromosomes in both species. Similarly, nucleolus organizer region sites were identified in the pericentromeric region of one middle-sized pair of chromosomes in both species. The cellular DNA contents were the same (3.3 pg) between the sexes and among this species and related species.  相似文献   

14.
Chromosome studies on 14 specimens of Deltamys kempi disclosed six males with 2n = 37, NF = 38, six females with 2n = 38, NF = 38, and two females with 2n = 37, NF = 38. G- and C-band analyses revealed a Y-autosome translocation in the males leading to a multiple chromosome system of sex determination of the type X1X1X2X2/X1X2Y, this being the second case of such a mechanism described in rodents. At meiosis the males presented a trivalent in which C-banding studies showed an alternate orientation of the sex chromosomes due to end-to-end association of the X1 and Y chromosomes, the Y and the X2 being held together by interstitial chiasmata. At metaphase II both n = 17 + Y and n = 18 + X1 are regularly observed. The two females with 2n = 37, NF = 38, are heterozygous for an autosomal centric fusion involving chromosomes 1 and 13. The product of the Y-autosome translocation constitutes the largest element of the karyotype (9.4% of the haploid set); the X1 chromosome amounts to 7.8% of this set, including a large heterochromatic block. When only its euchromatic region is considered, this percentage decreases to 4.6%. From two to seven NORs were observed at the telomeres, with a mean of 4.4 +/- 1.1 per cell.  相似文献   

15.
Comparative cytological and histological studies during embryogenesis of seeds from 2x X 2x and 2x x 4x crosses indicate that the ratio of ploidy level between embryo and endosperm is the most important factor affecting the course of seed development. The crosses produced seeds with the expected ploidy relationships between embryo, endosperm, and maternal tissue of 2:3:2 and 3:4:2 as well as the anomalous relationships 3:5:2, 4:6:2, and 6:10:2. All but 3:4:2 resulted in normal, germinable seeds. The ploidy level of the maternal tissue in relation to that of the embryo or endosperm did not appear to have any effect on seed development. About 92–99 % of seeds from 2x x 4x crosses containing triploid embryos with tetraploid endosperm aborted at different stages of embryogenesis. The abortion in all cases was preceded by abnormalities in the tetraploid endosperm. It is postulated that the unbalance of chromosome number between embryo and endosperm disturbs physiological relationships between these two tissues, leading first to the abortion of the endosperm and then of the embryo.  相似文献   

16.
Fragile X syndrome represents the most common inherited cause of mental retardation. It is caused by a stretch of CGG repeats within the fragile X gene, which increases in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, no protein is produced, resulting in the fragile X phenotype. Both X chromosome inactivation and inactivation of the FMR1 gene are the result of methylation. X inactivation occurs earlier than inactivation of the FMR1 gene. The instability to a full mutation is dependent on the sex of the transmitting parent and occurs only from mother to child. For most X-chromosomal diseases, female carriers do not express the phenotype. A clear exception is fragile X syndrome. It is clear that more than 50% of the neurons have to express the protein to ensure a normal phenotype in females. This means that a normal phenotype in female carriers of a full mutation is accompanied by a distortion of the normal distribution of X inactivation.  相似文献   

17.
18.
Ohne Zusammenfassung Mit 30 Textabbildungen  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号