首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basis for the apparent loss of metabolic co-operation in a line of mec? cells derived by selection from a mec+ line has been investigated. The results indicate that the loss of pyrimidine deoxyribonucleotide co-operation in these cells is due neither to the dilution of transferred nucleotides by enlarged endogenous pools nor to the failure of distinct internal pools to equilibrate, but rather to a deficiency of intercellular junctions. This deficiency can be reversed by treatment of the cells with db-cAMP and theophylline which results in the restoration of co-operation for TdR nucleotides. The results also indicate that the residual junctional sites in mec? cells can transfer TdR nucleotides under conditions where the mec+ donor pools are expanded.  相似文献   

2.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na++K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na++K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2·10?6 M. Neuro-2A cells contain (3.5±0.7)·105 ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7±0.4)·10?20 mol K+/min per copy of (Na++K+)-ATPase at room temperature.  相似文献   

3.
The relationship between alkaline phosphatase activity and cell growth has been studied in hamster cells transformed by different carcinogens. About 90% of normal hamster embryo cells were constitutively positive for alkaline phosphatase activity (AP+). However, there were no AP+ cells in cell lines transformed after treatment with the chemical carcinogens dimethylnitrosamine or 4-nitro-quinoline-N-oxide and 0.02% and 4% AP+ cells in cell lines transformed by polyoma virus or Simian virus 40. The glucocorticoid hormone, prednisolone, induced alkaline phosphatase activity in 12% and 44% of the enzyme-negative (AP?) cells in cell lines transformed by polyoma or Simian virus 40, but this hormone did not induce alkaline phosphatase activity in AP? cells from cell lines transformed after treatment with the chemical carcinogens. Treatment of polyoma transformed AP? cells with the mutagen N-methyl-N′-nitro-N-nitro-soguanidine produced AP+ cells, whereas no AP+ cells were found after mutagen treatment of AP? cells from the chemically transformed cell lines. Studies on spontaneous segregation in the polyoma transformed cell line has shown that AP+ cells segregated AP? cells both in vitro and in vivo, although no spontaneous segregation was observed from AP? to AP+ cells. AP+ cells, compared to AP? cells, showed a decrease in DNA synthesis, cell multiplication, the ability to form colonies in soft agar and tumorogenicity in animals. AP? cells induced for alkaline phosphatase activity by prednisolone, showed the same growth properties in vitro as uninduced AP? cells. The decreased cell growth found in AP+ cells which were constitutive for alkaline phosphatase activity was therefore not found in the hormone induced AP? cells. The results indicate that constitutive alkaline phosphatase activity appears to be related to the regulation of cell growth and that AP? cells have a selective advantage over AP+ cells.  相似文献   

4.
3T3C2 mouse fibroblasts rendered permeable to (α?32P)NAD+ show cholera toxin-dependent labeling of a 45,000 m.w. protein and of a doublet of polypeptides around 52,000 m.w. These same bands are ADP-ribosylated in broken cells. Membranes prepared from pigeon erythrocytes pretreated with choleragen show a decrease in subsequent cholera toxin-specific ADP-ribosylation of a 43,000 m.w. polypeptide. Both whole cell and broken cell adenylate cyclase activation and toxin-specific ADP-ribosylation are reversed specifically by low pH and high concentrations of toxin and nicotinamide in all systems. Thus ADP-ribosylation appears to be relevant to the molecular action of choleragen in whole cells as well as in broken cells.  相似文献   

5.
In in vitro plaque-forming cell (PFC) response to particulate as well as to soluble antigen, the functional difference between Fc receptor-bearing (FcR+) and nonbearing (FcR?) murine splenic lymphocytes was analyzed using the EA rosetting method. In the secondary anti-horse red blood cell (HRBC) response of C3H mice, FcR? cells showed higher IgM and IgG responses than did FcR+ cells. When nylon wool (NW)-purified T cells primed with keyhole limpet hemocyanin (KLH) were fractionated into FcR? and FcR+ T cells, helper activity was proven in the former subset in the cooperation with syngeneic spleen cells primed with dinitrophenylated ascaris extract (DNP-Asc). FcR+ T cells showed essentially no helper activity. When FcR? cells were cultured, neogenesis of FcR+ cells was observed on Days 3 to 5. The conversion from FcR? to FcR+ cells was prominent in B cells (40 to 50%), whereas NW-purified nonadherent FcR? T cells converted poorly (15 to 20%). The converting process was accelerated slightly by mitogens, but was least affected by antigens. To examine the possible contribution of neogeneic FcR+ T cells in the helper activity, KLH-primed FcR? T cells were precultured for 7 days with homologous antigen. The specific helper activity of the cultured T cells proved to be unaffected by the depletion of neogeneic FcR+ T cells by EA rosetting. The neogeneic FcR+ T cells had no helper activity. It was thus suggested that helper T cells remain in the FcR? cell fraction and do not convert to the FcR+ state during the cooperating process.  相似文献   

6.
Tolerance of Populus euphratica suspended cells to ionic and osmotic stresses implemented respectively by NaCl and PEG (6000) was characterized by monitoring cell growth, morphological features, ion compartmentation and polypeptide patterns. The cells grew and proliferated when submitted to stresses of 137 mM NaCl or 250 g l−1 PEG, and survived at 308 mM of NaCl, showing tolerance to saline and particularly osmotic stress. They were resistant to plasmolysis and had dense cytoplasms, large nuclei and nucleoli, and evident cytoplasmic strands under high saline and osmotic stress. The sequestration of Cl into the vacuoles was observed in the cells stressed with 137 and 223 mM NaCl. The cellular protein profile was modified by high salt and osmotic stress and showed 28 kDa polypeptides up-regulated by both NaCl and PEG, and 66 and 25 kDa polypeptides up-regulated only by high NaCl stress. The salt tolerance of P. euphratica cells might be related to their capacity of adapting to higher osmotic stress by maintaining cell integrity, sequestrating Cl into vacuoles and modulating polypeptides that reflect cellular metabolic adaptations.  相似文献   

7.
The in vitro influence of potassium ion modulations, in the concentration range 2 mM–500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+/K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 × 10? 6 M / 8.56 × 10? 5 M and 7.06 × 10? 7 M /1.87 × 10? 5 M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50 – 500 mM) in the medium assay prior to Na+/K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+/K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+/K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction.  相似文献   

8.
Sera from different strains of mice injected with endotoxin induced clones (D+) from a cultured line of myeloid leukemic cells to undergo normal differentiation to mature granulocytes and macrophages. Other clones (D?) derived from the same cell line were not inducible by these sera to undergo normal cell differentiation. Sera from the same strains of mice that had not been injected with endotoxin, increased the cloning efficiency of D+ and D ? clones but did not induce differentiation. Endotoxin serum induced differentiation in D+ cells at dilutions up to 1:64, but increased the cloning efficiency of these cells at dilutions up to 1:2048. The end point of the dilution of endotoxin serum that induced differentiation in D+ cells, was also the end point that induced the formation of colonies with differentiation from normal bone marrow cells. The results indicate that serum from endotoxin treated animals can serve as a good in vivo source to induce normal differentiation in D+ myeloid leukemic cells; that the progeny of a single leukemic cell was induced to undergo differentiation to both macrophages and granulocytes; that endotoxin serum contained two activities, one that increased cloning efficiency and the other that induced cell differentiation; and that the same material in endotoxin serum induced cell differentiation in normal and leukemic cells.  相似文献   

9.
We describe the isolation from the HGPRT? embryonal carcinoma cell line PC13TG8 of a variant, R5/3, defective in metabolic cooperation. This was achieved in two stages via an intermediate, R2/1, using a selective system in which the HGPRT? embryonal carcinoma cells were co-cultured with HGPRT+ cells in 6-thioguanine. R5/3 cells show increased survival compared with PC13TG8 when retested under selection conditions, and a reduction in grain count index when tested by autoradiography as recipients of [3H]hypoxanthine-labelled nucleotides from wild-type donors and as donors of [3H]thymidine- and [3H]adenine-labelled nucleotides to suitably marked recipients. However, a low residual fraction of heavily labelled recipients is found in all autoradiographic experiments with R5/3 cells. This is not due to heterogeneity of either donor or recipient populations. We also describe the development of a colony-formation assay for metabolic cooperation based on the “kiss of life” phenomenon, in which R5/3 shows very poor survival compared with PC13TG8. R2/1 shows behaviour intermediate between PC13TG8 and R5/3 in all the tests described above. We conclude that two steps can be identified in the change of phenotype by which R5/3 is derived from PC13TG8, and that both steps modify the ability of the cells to form permeable junctions.  相似文献   

10.
Furosemide (1 · 10?4M) inhibits a proportion of the total passive (ouabain-insensitive) K+ influx into primary chick heart cell cultures (85%), BC3H1 cells (75%), MDCK cells (40%) and HeLa cells (57%). This action of furosemide upon K+ influx is independent of (Na+ + K+)-pump inhibition since the furosemide-sensitive component of the K+ influx is identical in the presence and absence of ouabain (1 · 10?3M). For HeLa cells the passive, furosemide-sensitive component of K+ influx is markedly dependent upon the external K+, Na+ and Cl? content. Acetate, iodide and nitrate are ineffective as substitutes for Cl?, whereas Br? is partially effective. Partial Cl? replacement by NO3? gave an apparent affinity of 100 mM [Cl]. Na+ replacement by choline+ abolishes the furosemide-sensitive component, whereas Li+ replacement reduces this component by 48%. Partial Na+ replacement by choline+ gives an apparent affinity of 25 mM [Na+]. Variation in the external K+ content gives an affinity for the furosemide-sensitive component of approx. 1.0 mM. Furosemide inhibition of the passive K+ inflúx is of high affinity, half-maximal inhibition being observed at 5 · 10?6M furosemide. Piretanide (1 · 10?4M) and phloretin (1 · 10?4M) inhibit the same component of passive K+ influx as furosemide; ethacrynic acid and amiloride (both 1 · 10?4M) partially so. The stilbene, SITS (1 · 10?6M), was ineffective as an inhibitor of the furosemide-sensitive component.  相似文献   

11.
The effect of alcohol on enzymes involved in energy metabolism of nervous tissue were analyzed, in vivo after acute and chronic ethanol administration to rats and in vitro by addition of 50 mM and 100 mM ethanol to the medium of cultured nerve cells: chick neurons, chick glial cells, a neuronal cell line (MT17) and a glial tumoral cell line (C6). The parameters we measured were (Na+,K+), Mg2+ and ecto Ca2+,Mg2+ ATPase activities involved in transport phenomena and enolase activities (non neuronal NNE and neuron specific enolase NSE) as markers of nerve cell maturation. In vivo, after chronic ethanol administration (Na+,K+) ATPase activity was increased while Mg2+ dependent activity was not affected. Enolase activity was decreased. Acute ethanol administration decreased (Na+,K+) ATPase activity, while Mg2+ dependent activity was not affected. In cultured nerve cells ethanol effect was dose, time and cell type dependent; alterations of the cell membrane by trypsinization of the tissue before seeding modifies the effect of ethanol on the enzymes we analyzed. Our results suggest that alcohol effect on nerve cells depends mainly on the lipoprotein structure of the cell membranes which may have different properties from one cell type to another.  相似文献   

12.
Abstract

The effect of NADP+ and glucose-6-phosphate (G6P) on the biotransformation of D-xylose to xylitol by cells of Candida guilliermondii permeabilized with surfactant Triton X-100 was evaluated. The experimental runs were performed with 12 g L?1 of permeabilized cells and a reaction medium composed of Tris–HCl buffer (0.1 M pH 7), D-xylose (57 g L?1), and MgCl2.6H2O (5 mM). The levels of NADP+ (from 0.0 to 1.7 mM) and G6P (from 0.00 to 0.17 M) were varied according a 22-full factorial composed design. Under optimized conditions (NADP+ 0.5 mM and 0.05 M G6P), the xylitol volumetric productivity (QP) and yield factor (YP/S) predicted were 1.86 ± 0.03 g L?1 h? 1 and 0.64 ± 0.03 g g?1, respectively. These values were 94% and 19% higher than those obtained with unpermeabilized cells under fermentation conditions (0.97 g L?1 h?1 and 0.53 g g?1, respectively). On the basis of the results, it can be concluded that xylitol production by biotransformation with cells of C. guilliermondii permeabilized with Triton X-100 is a promising alternative to the fermentative process.  相似文献   

13.
Treatment of Photosystem II particles from spinach chloroplasts with Triton X-100 with 2.6 M urea in the presence of 200 mM NaCl removed 3 polypeptides of 33 kDa, 24 kDa and 18 kDa, but left Mn bound to the particles. The (urea + NaCl)-treated particles could evolve oxygen in 200 mM, but not in 10 mM NaCl. Mn was gradually released with concomitant loss of oxygen-evolution activity in 10 mM NaCl but not in 200 mM Cl?. The NaCl-treated particles, which contained Mn and the 33-kDa polypeptide but not the 24-kDa and 18-kDa polypeptides, did not lose Mn or oxygen-evolution activity in 10 mM NaCl. These observations suggest that the 33-kDa polypeptide maintains the binding of Mn to the oxygen-evolution system and can be functionally replaced by 200 mM Cl?.  相似文献   

14.
Background aimsCytokine-induced killer (CIK) cells may serve as an alternative approach to adoptive donor lymphocyte infusions (DLI) for patients with acute leukemia relapsing after haplo-identical hematopoietic stem cell transplantation (HSCT). We investigated the feasibility of enhancing CIK cell-mediated cytotoxicity by interleukin (IL)-15 against acute myeloid and lymphoblastic leukemia/lymphoma cells.MethodsCIK cells were activated using IL-2 (CIKIL-2) or IL-15 (CIKIL-15) and phenotypically analyzed by fluorescence-activated cell sorting (FACS). Cytotoxic potential was measured by europium release assay.ResultsCIKIL-2 cells showed potent cytotoxicity against the T-lymphoma cell line H9, T-cell acute lymphoblastic leukemia (T-ALL) cell line MOLT-4 and subtype M4 acute myeloid leukemia (AML) cell line THP-1, but low cytotoxicity against the precursor B (pB)-cell ALL cell line Tanoue. IL-15 stimulation resulted in a significant enhancement of CIK cell-mediated cytotoxicity against acute lymphoblastic leukemia/lymphoma cell lines as well as against primary acute myeloid and defined lymphoblastic leukemia cells. However, the alloreactive potential of CIKIL-15 cells remained low. Further analysis of CIKIL-15 cells demonstrated that the NKG2D receptor is apparently involved in the recognition of target cells whereas killer-cell immunoglobulin-like receptor (KIR)-HLA mismatches contributed to a lesser extent to the CIKIL-15 cell-mediated cytotoxicity. In this context, CD3 + CD8 + CD25 + CD56? CIKIL-15 cell subpopulations were more effective in the lysis of AML cells, in contrast with CD56 + CIKIL-15 cells, which showed the highest cytotoxic potential against ALL cells.ConclusionsThis study provides the first evidence that CIKIL-15 cells may offer a therapeutic option for patients with refractory or relapsed leukemia following haplo-identical HSCT.  相似文献   

15.
Treatment of mouse tissue-culture cells with nicotine concentrations of 1 mM or less had no significant effects on cell viability, morphology or protein synthesis, but higher concentrations resulted in both altered cell morphology (rounding and vacuolization) and alterations in [3H]leucine-labelled protein profiles on sodium dodecyl sulphate/polyacrylamide gels. The synthesis of a Mr-70 000 protein was increased more than 2-fold relative to that of other major cellular proteins in 3T3 and L929 cells treated with 5 mM-nicotine and in B16 cells treated with 10 mM-nicotine, and this protein appeared to be a soluble cytoplasmic polypeptide. The radiolabelling of several additional polypeptides (Mr 62 000 in 3T3 cells, and Mr 45 000 and 38 000 in B16 cells) was also stimulated by nicotine. The nicotine-enhanced Mr-70 000 protein was distinct, however, from a major cell stress/heat-shock protein whose synthesis was stimulated after incubation of cells at 43.5 degrees C for 20 min.  相似文献   

16.
We have shown previously that Ehrlich ascites tumor cells maintained at room temperature under an oxygen atmosphere lose Na+, K+ and Cl? isosmotically when exposed to La+++ (0.1 to 1.0 mM). Concomitant with these changes there is an increase in the recorded membrane potential (increasing intracellular negativity). The present studies further characterize the effect of La+++ on electrolyte distribution. Ehrlich ascites tumor cells were maintained at 0.5° C to permit Na+ gain and K+ loss. The addition of 1 mM La+++ to low temperature cells induces rapid loss of Na+, K+ and Cl?. This net loss of cellular electrolytes occurs even in cells depleted of ATP content using 2-deoxyglucose (5 mM) and rotenone (10?6 M ). Analysis of the appearance of tracer 22Na in the environment of cells preloaded with the radioisotope shows that La+++-induced changes in membrane permeability or in active ion transport mechanisms are not responsible for the dramatic loss of electrolytes from experimental cells. The electrolyte loss occurs only when the cells are resuspended mechanically during the washing procedure used to prepare the cells for electrolyte determination. We conclude that the results of La+++ interaction with Ehrlich ascites tumor cells are twofold. As we have previously reported, La+++ stabilizes and causes a hyperpolarization of the membrane potential. Secondly, La+++ predisposes the cell membrane to become highly permeable when subjected to mechanical stress.  相似文献   

17.
Electron probe X-ray microanalysis was used to analyse the effects of sub-zero temperatures on K+ distribution in compartments within non-acclimated and cold acclimated rye (Secale cereale L. cv Voima) leaf cells and to evaluate membrane leakage of ions caused by freezing-injury. The specimens were rapidly frozen from growing temperatures and from two different sub-zero temperatures (LT50 and LT100) to which the leaves had already been slowly cooled. Measurements were made in the cytoplasm, vacuole and cell walls in freeze-substituted mesophyll cells. At ambient temperatures, the mean K+ concentration in the cytoplasm (100 mol m?3) differed significantly from that of the vacuole (49 mol m?3) in the non-acclimated (NA) cells, while in cold acclimated (A) cells, the concentrations were similar (109 vs 93 mol m?3, respectively). At LT50 temperatures, the K+ concentration in NA-cells decreased significantly in the cytoplasm (59 mol m?3) but increased in the cell walls. In the A-cells, on the other hand, the mean K+ concentration increased significantly (about three-fold) in all major compartments. At LT100 temperatures, K+ concentrations in the cytoplasm and cell walls decreased when compared with corresponding LT50 values in the A-cells but increased in the NA-cells. The increased potassium concentration in the cytoplasm of A-cells at LT50 temperature is compatible with the observed cell shrinkage and an absence of plasma membrane damage. The decreased potassium concentration in the cytoplasm of NA-cells at LT50 temperature is compatible with the slight cell shrinkage and suggests that the plasma membrane in these cells shows increased permeability due to freeze injury.  相似文献   

18.
In this study, a suspension culture of recombinant Chinese hamster ovary (CHO) cells producing follicle-stimulating hormone (FSH) was used to investigate the effects of potassium ion (K+) on cell growth and FSH production. Cell growth was significantly suppressed at a K+ concentration higher than 60 mM, but specific FSH productivity (q FSH) was enhanced more than 2-fold compared to the value obtained at 4 mM K+. In an attempt to alleviate the cell growth suppression at a high K+ concentration, the cells were adapted at 60 mM K+ in a repeated batch mode. During adaptation, the growth rate increased from 0.010 to 0.020 h−1, andq FSH also gradually increased and reached 11.1 ng/(106 cells h), which was even higher than that of the unadapted cells at 60 mM K+. The adapted cells showed a 2.6-fold increase in maximum FSH titer at 80 mM K+ compared to the unadapted cells at 4 mM K+. Taken together, these results demonstrate the potential of using culture media containing cells adapted to high K+ concentrations, for the enhancement of recombinant protein production.  相似文献   

19.
Sertoli cell cultures were prepared from the testes of 20-day-old rats. The proteins which were secreted by the cells into the culture medium were labeled with [3H]leucine or l-[3H]fucose. The proteins were concentrated by ultrafiltration and analysed by polyacrylamide slab gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). Autofluorography of the gels at ?70 °C showed that the rat Sertoli cells synthesized and secreted at least 7 major polypeptides. The polypeptides had molecular weights ranging from 16 000 to 140 000 D. Proteins which were secreted from cultures of testicular fibroblasts and myoid cells had electrophoretic properties on SDS-PAGE which were different from Sertoli cell secreted proteins. Addition of FSH and testosterone to the Sertoli cell cultures increased the total synthesis and secretion of [3H]leucine-labeled proteins. No qualitative changes in the proteins as a result of hormone application could be detected. However, the synthesis of a polypeptide of molecular weight 48 000 was increased relative to the other secreted peptides if the cells were maintained in FSH and testosterone. The Sertoli cell secreted proteins were shown to be glycoproteins which can bind to ConA-Sepharose and can be labeled with [3H]fucose. Tunicamycin, a specific inhibitor of N-glycosylation, inhibited the secretion of [3H]proteins by 50% but had little effect on the intracellular protein synthesis.  相似文献   

20.
Biomineralization on bacterial surface is affected by biomolecules of bacterial cell surface. Lipopolysaccharide (LPS) is the main and outermost component on the extracellular membrane of Gram-negative bacteria. In the present study, the molecular mechanism of LPS in affecting biomineralization of Ag+/Cl? colloids was investigated by taking advantages of two LPS structural deficient mutants of Escherichia coli. The two mutants were generated by impairing the expression of waaP or wbbH genes with CRISPR/Cas9 technology and it induced deficient polysaccharide chain of O-antigen (ΔwbbH) or phosphate groups of core oligosaccharide (ΔwaaP) in LPS structures. There were significant changes of the cell morphology and surface charge of the two mutants in comparing with that of wild type cells. LPS from ΔwaaP mutant showed increased ΔHITC upon interacting with free Ag+ ions than LPS from wild type cells or ΔwbbH mutant, implying the binding affinity of LPS to Ag+ ions is affected by the phosphate groups in core oligosaccharide. LPS from ΔwbbH mutant showed decreased endotherm (ΔQ) upon interacting with Ag+/Cl? colloids than LPS from wild type or ΔwaaP mutant cells, implying LPS polysaccharide chain structure is critical for stabilizing Ag+/Cl? colloids. Biomineralization of Ag+/Cl? colloids on ΔwbbH mutant cell surface showed distinctive morphology in comparison with that of wild type or ΔwaaP mutant cells, which confirmed the critical role of O-antigen of LPS in biomineralization. The present work provided molecular evidence of the relationship between LPS structure, ions, and ionic colloids in biomineralization on bacterial cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号