首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to β-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.  相似文献   

2.
3.
4.
Shmygol A  Wray S 《Cell calcium》2005,37(3):215-223
Release of Ca2+ from sarcoplasmic reticulum (SR) is one of the most important mechanisms of smooth muscle stimulation by a variety of physiologically active substances. Agonist-induced Ca2+ release is considered to be dependent on the Ca2+ content of the SR, although the mechanism underlying this dependence is unclear. In the present study, the effect of SR Ca2+ load on the amplitude of [Ca2+]i transients elicited by application of the purinergic agonist ATP was examined in uterine smooth muscle cells isolated from pregnant rats. Measurement of intraluminal Ca2+ level ([Ca2+]L) using a low affinity Ca indicator, mag-fluo-4, revealed that incubation of cells in a high-Ca2+ (10 mM) extracellular solution leads to a substantial increase in [Ca2+]L (SR overload). However, despite increased SR Ca2+ content this did not potentiate ATP-induced [Ca2+]i transients. Repetitive applications of ATP in the absence of extracellular Ca2+, as well as prolonged incubation in Ca2+-free solution without agonist, depleted the [Ca2+]L (SR overload). In contrast to overload, partial depletion of the SR substantially reduced the amplitude of Ca2+ release. ATP-induced [Ca2+]i transients were completely abolished when SR Ca2+ content was decreased below 80% of its normal value indicating a steep dependence of the IP3-mediated Ca2+ release on the Ca2+ load of the store. Our results suggest that in uterine smooth muscle cells decrease in the SR Ca2+ load below its normal resting level substantially reduces the IP3-mediated Ca2+ release, while Ca2+ overload of the SR has no impact on such release.  相似文献   

5.
Woo SH  Risius T  Morad M 《Cell calcium》2007,41(4):397-403
Atrial myocytes that lack t-tubules appear to have two functionally separate sarcoplasmic Ca2+ stores: a peripheral store associated with plasmalemmal L-type calcium channels and a central store with no apparent proximity to L-type calcium channels. Here we describe a set of calcium sparks and waves that are triggered by puffing of pressurized (200-400 mmH2O) bathing solutions onto resting isolated rat atrial myocytes. Puffing of pressurized (200 mmH2O) solutions, identical to those bathing the myocytes from distances of approximately 150 microm onto the surface of a single myocyte triggered or enhanced spontaneously occurring peripheral sparks by five- to six-fold and central Ca2+ sparks by two- to three-fold, without altering the unitary spark properties. Exposure to higher pressure flows (400 mmH2O) often triggered longitudinally spreading Ca2+ waves. These results suggest that pressurized flows may directly modulate Ca2+ signaling of atrial myocytes by activating the intracellular Ca2+ release sites.  相似文献   

6.
Factors contributing to "local control" of Ca2+ release in cardiac myocytes are incompletely understood. We induced local release of Ca2+ by regional exposure of mouse atrial and ventricular myocytes to 10mM caffeine for 500 ms using a rapid solution switcher. Propagation of Ca2+ release was imaged by means of a Nipkow confocal microscope, and fluo-3. Under physiologic conditions, a local release of Ca2+ propagated in atrial myocytes, not in ventricular myocytes. Inhibition of SR Ca2+ uptake (500 nM thapsigargin), and of Ca2+ extrusion via Na/Ca exchange (5mM Ni2+), did not result in propagation in ventricular myocytes. The density of mitochondria was greater in ventricular than in atrial myocytes, although the abundance of ryanodine receptors and myofilaments was similar. Partial inhibition of Ca2+ uptake via the mitochondrial Ca2+ uniporter (5 microM Ru360) caused an increase in the [Ca2+]i transient in paced ventricular myocytes, and consistently resulted in propagation of Ca2+ release. This effect of Ru360 did not appear to be due to altered SR Ca2+ content. These data indicate that Ca2+ uptake via the mitochondrial uniporter occurs on a beat-to-beat basis, and may contribute to local control of Ca2+ release. Propagation of Ca2+ release in atrial myocytes may result in part from the relatively low density of mitochondria present.  相似文献   

7.
The central paradox of cardiac excitation-contraction coupling is that Ca(2+)-induced Ca2+ release (CICR), an inherently self-regenerating process, is finely graded by surface membrane Ca2+ current (ICa). By using FPL64176, a novel Ca2+ channel agonist that reduces inactivation of ICa, a rapid negative control mechanism was unmasked at the Ca2+ release level in isolated rat ventricular myocytes. This mechanism terminates CICR independently of the duration of trigger ICa and before the sarcoplasmic reticulum becomes depleted of Ca2+. In its ability to be reactivated by incremental increases in trigger ICa, this mechanism differs from conventional inactivation/desensitization and is similar to the mechanism of increment detection or adaptation described for intracellular Ca2+ release channels. These results indicate that ryanodine receptor adaptation regulates Ca2+ release in cardiac muscle, accounting for or contributing to the graded nature of CICR and, additionally, permitting stores to reload at later times during Ca2+ entry.  相似文献   

8.
Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes   总被引:2,自引:0,他引:2  
It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d myocytes) than when mediated by I(Ca) ( approximately 3.0 for 56d myocytes). We conclude that the lower-efficiency NCX-mediated CICR is a predominant mode of CICR in the earliest developmental stages that gradually decreases as the more efficient L-type Ca(2+) channel-mediated CICR increases in prominence with ontogeny.  相似文献   

9.
Cardiac calsequestrin (CASQ2) is an intrasarcoplasmic reticulum (SR) low-affinity Ca-binding protein, with mutations that are associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT). To better understand how CASQ2 mutants cause CPVT, we expressed two CPVT-linked CASQ2 mutants, a truncated protein (at G112+5X, CASQ2DEL) or CASQ2 containing a point mutation (CASQ2R33Q), in canine ventricular myocytes and assessed their effects on Ca handling. We also measured CASQ2-CASQ2 variant interactions using fluorescence resonance transfer in a heterologous expression system, and evaluated CASQ2 interaction with triadin. We found that expression of CASQ2DEL or CASQ2R33Q altered myocyte Ca signaling through two different mechanisms. Overexpressing CASQ2DEL disrupted the CASQ2 polymerization required for high capacity Ca binding, whereas CASQ2R33Q compromised the ability of CASQ2 to control ryanodine receptor (RyR2) channel activity. Despite profound differences in SR Ca buffering strengths, local Ca release terminated at the same free luminal [Ca] in control cells, cells overexpressing wild-type CASQ2 and CASQ2DEL-expressing myocytes, suggesting that a decline in [Ca]SR is a signal for RyR2 closure. Importantly, disrupting interactions between the RyR2 channel and CASQ2 by expressing CASQ2R33Q markedly lowered the [Ca]SR threshold for Ca release termination. We conclude that CASQ2 in the SR determines the magnitude and duration of Ca release from each SR terminal by providing both a local source of releasable Ca and by effects on luminal Ca-dependent RyR2 gating. Furthermore, two CPVT-inducing CASQ2 mutations, which cause mechanistically different defects in CASQ2 and RyR2 function, lead to increased diastolic SR Ca release events and exhibit a similar CPVT disease phenotype.  相似文献   

10.
Atrial and ventricular myocytes 200 to 300 microm long containing one to five myofibrils are isolated from frog hearts. After a cell is caught and held between two suction micropipettes the surface membrane is destroyed by briefly jetting relaxing solution containing 0.05% Triton X-100 on it from a third micropipette. Jetting buffered Ca2+ from other pipettes produces sustained contractions that relax completely on cessation. The pCa/force relationship is determined at 20 degrees C by perfusing a closely spaced sequence of pCa concentrations (pCa = -log[Ca2+]) past the skinned myocyte. At each step in the pCa series quick release of the myocyte length defines the tension baseline and quick restretch allows the kinetics of the return to steady tension to be observed. The pCa/force data fit to the Hill equation for atrial and ventricular myocytes yield, respectively, a pK (curve midpoint) of 5.86 +/- 0.03 (mean +/- SE.; n = 7) and 5.87 +/- 0.02 (n = 18) and an nH (slope) of 4.3 +/- 0.34 and 5.1 +/- 0.35. These slopes are about double those reported previously, suggesting that the cooperativity of Ca2+ activation in frog cardiac myofibrils is as strong as in fast skeletal muscle. The shape of the pCa/force relationship differs from that usually reported for skeletal muscle in that it closely follows the ideal fitted Hill plot with a single slope while that of skeletal muscle appears steeper in the lower than in the upper half. The rate of tension redevelopment following release restretch protocol increases with Ca2+ >10-fold and continues to rise after Ca2+ activated tension saturates. This finding provides support for a strong kinetic mechanism of force regulation by Ca2+ in frog cardiac muscle, at variance with previous reports on mammalian heart muscle. The maximum rate of tension redevelopment following restretch is approximately twofold faster for atrial than for ventricular myocytes, in accord with the idea that the intrinsic speed of the contractile proteins is faster in atrial than in ventricular myocardium.  相似文献   

11.
L-type calcium currents (ICa) were recorded from isolated ventricular myocytes by using standard patch-clamp methods. In the absence of agonist, photorelease of GTP by flash photolysis of intracellularly applied caged-GTP rapidly increased the amplitude of ICa over a wide range of membrane potentials. Control experiments clearly demonstrated that this effect was not due to either the release of photolytic by-products or to the light flash itself. The timecourse for activation of ICa by photolysis of caged-GTP was markedly altered by intracellular application of either GDP beta S or GTP gamma S. Upon maximal stimulation of ICa by intracellular dialysis with cAMP, photoreleased GTP induced a small, rapid increase in ICa followed by a gradual inhibition. The presence of Rp-cAMPS intracellularly reduced both the magnitude of the response to photoreleased GTP and its time to peak. Similar effects were observed when protein kinase inhibitor dialysed the cell interior, suggesting that both cAMP-dependent and independent processes were involved in this effect. We conclude that rapid release of GTP within ventricular myocytes, in the absence of agonist, causes rapid activation of L-type Ca2+ current. Mechanisms underlying this effect include stimulation of adenylate cyclase, together with other, as yet uncharacterized, GTP-dependent pathways for increasing ICa in the heart.  相似文献   

12.
13.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

14.
Cardiac alternans is a recognized risk factor for cardiac arrhythmia and sudden cardiac death. At the cellular level, Ca(2+) alternans appears as cytosolic Ca(2+) transients of alternating amplitude at regular beating frequency. Cardiac alternans is a multifactorial process but has been linked to disturbances in intracellular Ca(2+) regulation. In atrial myocytes, we tested the role of voltage-gated Ca(2+) current, sarcoplasmic reticulum (SR) Ca(2+) load, and restitution properties of SR Ca(2+) release for the occurrence of pacing-induced Ca(2+) alternans. Voltage-clamp experiments revealed that peak Ca(2+) current was not affected during alternans, and alternans of end-diastolic SR Ca(2+) load, evaluated by application of caffeine or measured directly with an intra-SR fluorescent Ca(2+) indicator (fluo-5N), were not a requirement for cytosolic Ca(2+) alternans. Restitution properties and kinetics of refractoriness of Ca(2+) release after activation during alternans were evaluated by four different approaches: measurements of 1) the delay (latency) of occurrence of spontaneous global Ca(2+) releases and 2) Ca(2+) spark frequency, both during rest after a large and small alternans Ca(2+) transient; 3) the magnitude of premature action potential-induced Ca(2+) transients after a large and small beat; and 4) the efficacy of a photolytically induced Ca(2+) signal (Ca(2+) uncaging from DM-nitrophen) to trigger additional Ca(2+) release during alternans. The results showed that the latency of global spontaneous Ca(2+) release was prolonged and Ca(2+) spark frequency was decreased after the large Ca(2+) transient during alternans. Furthermore, the restitution curve of the Ca(2+) transient elicited by premature action potentials or by photolysis-induced Ca(2+) release from the SR lagged behind after a large-amplitude transient during alternans compared with the small-amplitude transient. The data demonstrate that beat-to-beat alternation of the time-dependent restitution properties and refractory kinetics of the SR Ca(2+) release mechanism represents a key mechanism underlying cardiac alternans.  相似文献   

15.
1. We studied the effect of verapamil, nitrendipine, 3',4'-dichlorobenzamil (DCB) and Cd2+ on the increase in cytosolic free Ca2+ ([Ca2+]c) and the rate of O2-uptake induced by depolarization of isolated rat cardiac myocytes with veratridine. 2. The degree of inhibition by the several drugs tested on the increase in [Ca2+]c and respiration was dependent on extracellular Ca2+, pH and Na+. 3. Low verapamil and nitrendipine concentrations (2.5 microM) were fully effective in Ca2+ channel blockade, as indicated from experiments with isoproterenol and in a low-Na+ medium. 4. A complete inhibition of veratridine-induced increase in [Ca2+]c and O2-uptake was attained with higher Ca2+ blocker concentrations (25-30 microM), implying that these processes depend to a major extent on some other Ca2+ transport system, probably Na+/Ca2+ exchange.  相似文献   

16.
17.
The patterning of cardiac myocytes on a micron scale ( approximately 5 microm) was achieved by microcontact printing of fibronectin onto a hydrophobically pretreated glass substrate. The patterned cardiac myocytes conjugated with each other by forming a gap junction, as judged from the synchronized Ca(2+) transition over the pattern, and thus simultaneously contracted. The dynamic change of the Ca(2+) concentration within the patterned tissue was analyzed quantitatively during successive contraction and relaxation using a Nipkow-type high-speed confocal microscope.  相似文献   

18.
Calsequestrin (CASQ2) is a high capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR). Mutations in the cardiac calsequestrin gene (CASQ2) have been linked to arrhythmias and sudden death induced by exercise and emotional stress. We have studied the function of CASQ2 and the consequences of arrhythmogenic CASQ2 mutations on intracellular Ca signalling using a combination of approaches of reverse genetics and cellular physiology in adult cardiac myocytes. We have found that CASQ2 is an essential determinant of the ability of the SR to store and release Ca2+ in cardiac muscle. CASQ2 serves as a reservoir for Ca2+ that is readily accessible for Ca(2+)-induced Ca2+ release (CICR) and also as an active Ca2+ buffer that modulates the local luminal Ca-dependent closure of the SR Ca2+ release channels. At the same time, CASQ2 stabilizes the CICR process by slowing the functional recharging of SR Ca2+ stores. Abnormal restitution of the Ca2+ release channels from a luminal Ca-dependent refractory state could account for ventricular arrhythmias associated with mutations in the CASQ2 gene.  相似文献   

19.
20.
The possibility that inositol 1,4,5-trisphosphate (IP3) may act as a Ca2+-mobilizing second messenger in cardiac muscle in a manner analogous to its actions in other cell types has been examined using saponin-permeabilized myocytes and isolated cardiac sarcoplasmic reticulum. Myocytes permeabilized in the presence of MgATP2- sequestered Ca2+ to a level of about 200 nM, similar to the cytosolic free Ca2+ concentration of intact cells, but addition of IP3 was ineffective in causing Ca2+ release from intracellular stores. Similarly, IP3 (up to 50 microM) was unable to inhibit Ca2+ uptake or cause Ca2+ release from isolated canine cardiac sarcoplasmic reticulum vesicles in the presence of either EGTA or sodium vanadate. These results indicate that IP3 is unlikely to mediate mobilization of intracellular Ca2+ stores in myocardial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号