首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using indirect immunofluorescence microscopy and Western blot analysis, we have demonstrated increased levels of actin and tubulin proteins as well as an altered polymerization pattern of their cytoskeletal assemblies in maize, but not zucchini root apices, as a response to early boron deprivation. Northern blot analysis, however, did not show significant increases in the amount of steady-state mRNAs of actin and tubulin. This finding indicates that these rapid cytoskeletal responses to boron removal are very likely regulated at translational/post-translational levels. Interestingly, these increased levels of cytoskeletal proteins coincided well with a reduction in the water-extractable, but not with the cell wall-bound, fraction of boron. This implicates that free boric acid, or other more labile boron complexes, might be involved in the activation of cytoskeletal responses in maize root apices. In fact, our experimental approach revealed that maize was suffering from boron deprivation as early as zucchini. This was evidenced by its slightly reduced root elongation rate recorded within 3–5 h of boron deprivation. Importantly, however, maize roots can recover from this early inhibition indicating an effective adaptation mechanism. In contrast, zucchini roots apparently lack this boron-deprivation response pathway and suffer extensively when exposed to boron-free environment. This leads to the tentative working hypothesis for an adaptive mechanism of maize roots to boron deprivation by enhancing its cytoskeletal protein levels and altering their polymerization patterns in order to mechanically reinforce the cell periphery complex of their cells. This testable hypothesis requires further experimental verification.  相似文献   

2.
Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.  相似文献   

3.
4.
Mitogen-activated protein kinases (MAPKs) are ubiquitous phosphorylation enzymes involved in signal transduction, gene expression and activation of diverse cytoskeletal proteins. MAPKs participate in the regulation of a broad range of crucial cellular processes including cell survival, division, polarization, stress responses, and metabolism. Phosphorylation of cytoskeletal proteins usually results in the rearrangement of cytoskeletal arrays leading to morphological changes and cell polarization. On the other hand, some cytoskeletal motor proteins, such as kinesins, could activate MAPK members and participate in signal delivery to the proper cellular destination (e.g. during cell division). Moreover, changes in the integrity of cytoskeletal elements have direct impacts on MAPK activity. Recent evidence suggests that there is bi-directional signalling between MAPK cascades and cytoskeleton. The focus here is on this cross-talk between MAPK signalling and the cytoskeleton in various eukaryotic systems including yeast, plants, and mammals and a role is proposed for MAPKs as sensors monitoring the cytoskeleton-dependent balance of forces within the cell.  相似文献   

5.
In plants, light determines chloroplast position;these organelles show avoidance and accumulation re-sponses in high and low fluence-rate light, respectively. Chloroplast motility in response to light ...  相似文献   

6.
Nitrogen (N) is an important nutrient and signal for plant growth and development. However, to date, our knowledge of how plants sense and transduce the N signals is very limited. To better understand the molecular mechanisms of plant N responses, we took two-dimensional gel-based proteomic and phosphoproteomic approaches to profile the proteins with abundance and phosphorylation state changes during nitrate deprivation and recovery in the model plant Arabidopsis thaliana. After 7-day-old seedlings were N-deprived for up to 48 h followed by 24 h recovery, a total of 170 and 38 proteins were identified with significant changes in abundance and phosphorylation state, respectively. Bioinformatic analyses implicate these proteins in diverse cellular processes including N and protein metabolisms, photosynthesis, cytoskeleton, redox homeostasis, and signal transduction. Functional studies of the selected nitrate-responsive proteins indicate that the proteasome regulatory subunit RPT5a and the cytoskeleton protein Tubulin alpha-6 (TUA6) play important roles in plant nitrate responses by regulating plant N use efficiency (NUE) and low nitrate-induced anthocyanin biosynthesis, respectively. In conclusion, our study provides novel insights into plant responses to nitrate at the proteome level, which are expected to be highly useful for dissecting the N response pathways in higher plants and for improving plant NUE.  相似文献   

7.
Summary The irrigation water in use at the Punjab University New Campus is of good quality except the water of one tubewell which is relatively poor (high-salinity and low-sodium water) and has 0.45 ppm boron. Water with a boron content of upto 3.00 ppm did not affect the germination of the seeds of wheat (Triticum vulgare L. var. Mexi-Pak) and there was some stimulation of the growth of seedlings by an increase in the concentration of boron beyond 0.45 ppm. However, these seedlings, when transplanted to the soils supplied with waters containing different amounts of boron, showed a decrease in their growth at higher concentrations of boron with their ageing, and when these plants were about 100 days old and almost mature, their growth decreased significantly with an increase in the concentration of boron to 2.00 or 3.00 ppm in the water supplied to them. The growth of the plants of Mexi-Pak wheat is inversely related to the boron content of their tissues when it is more than 0.60 ppm. Mexi-Pak wheat is semi-tolerant to boron. re]19750605  相似文献   

8.
Nitrogen is an essential nutrient for plants because it represents a major constituent of numerous cellular compounds, including proteins, amino acids, nucleic acids and lipids. While N deprivation is known to have severe consequences for primary carbon metabolism, the effect on chloroplast lipid metabolism has not been analysed in higher plants. Nitrogen limitation in Arabidopsis led to a decrease in the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) and a concomitant increase in digalactosyldiacylglycerol (DGDG), which correlated with an elevated expression of the DGDG synthase genes DGD1 and DGD2. The amounts of triacylglycerol and free fatty acids increased during N deprivation. Furthermore, phytyl esters accumulated containing medium-chain fatty acids (12:0, 14:0) and a large amount of hexadecatrienoic acid (16:3). Fatty acid phytyl esters were localized to chloroplasts, in particular to thylakoids and plastoglobules. Different polyunsaturated acyl groups were found in phytyl esters accumulating in Arabidopsis lipid mutants and in other plants, including 16:3 and 18:3 species. Therefore N deficiency in higher plants results in a co-ordinated breakdown of galactolipids and chlorophyll with deposition of specific fatty acid phytyl esters in thylakoids and plastoglobules of chloroplasts.  相似文献   

9.
Boron deficiency increases putrescine levels in tobacco plants   总被引:5,自引:0,他引:5  
Polyamine concentrations were determined in leaves and roots of tobacco plants (Nicotiana tabacum L.) subjected to a short-term boron deficiency. A decrease in the growth of shoots and, especially, roots was found under this mineral deficiency. Boron deficiency did not lead to a significant decrease in leaf or root ion concentrations when compared to control treatment; however, as expected, leaf boron concentration was lower in boron-deficient plants in comparison to the control. In leaves, the levels of free putrescine and spermidine were similar in both treatments. In roots, a short-term boron deficiency caused an increase in free putrescine. Moreover, boron-deficient plants had higher conjugated polyamine concentration than boron-sufficient plants, which was especially evident for conjugated putrescine in leaves. A possible link between boron and polyamine levels is proposed and discussed.  相似文献   

10.
Metabolic Requirement of Cucurbita pepo for Boron   总被引:1,自引:0,他引:1       下载免费PDF全文
Lateral roots of intact summer squash seedlings (Cucurbita pepo L.) were used to quantify the effects of boron deficiency on DNA synthesis, protein synthesis, and respiration. The temporal relationship between changes in these metabolic activities and the cessation of root elongation caused by boron deprivation was determined. Transferring 5-day-old squash seedlings to a hydroponic culture medium without boron for 6 hours resulted in a 62% reduction in net root elongation and a 30% decrease in the incorporation of [3H]thymidine into DNA by root tips (apical 5-millimeter segments). At this time, root tips from both boron-deficient and boron-sufficient plants exhibited nearly identical rates of incorporation of [14C]leucine into protein and respiration as measured by O2 consumption. After an additional 6 hours of boron deprivation, root elongation had nearly ceased. Concomitantly, DNA synthesis in root apices was 66% less than in the boron-sufficient control plants and protein synthesis was reduced 43%. O2 consumption remained the same for both treatments. The decline and eventual cessation of root elongation correlated temporally with the decrease in DNA synthesis, but preceded changes in protein synthesis and respiration. These results suggest that boron is required for continued DNA synthesis and cell division in root meristems.  相似文献   

11.
Abstract: Plant shape can adapt to a changing environment. This requires a structure that (1) must be highly dynamic, (2) can respond to a range of signals, and (3) can control cellular morphogenesis. The cytoskeleton, microtubules, actin microfi-laments, and cytoskeletal motors meets these requirements, and plants have evolved specific cytoskeletal arrays consisting of both microtubules and microfilaments that can link signal transduction to cellular morphogenesis: cortical microtubules, preprophase band, phragmoplast on the microtubular side, transvacuolar microfilament bundles, and phragmosome on the actin side. These cytoskeletal arrays are reviewed with special focus on the signal responses of higher plants. The signal-triggered dynamic response of the cytoskeleton must be based on spatial cues that organize assembly and disassembly of tu-bulin and actin. In this context the great morphogenetic potential of cytoskeletal motors is discussed. The review closes with an outlook on new methodological approaches to the problem of signal-triggered morphogenesis.  相似文献   

12.
13.
Boron contamination in the agricultural lands is an important problem for Western Turkey, which has rich boron deposits. This study was carried out in Nazilli regions upon orange (Citrus sinensis L. Osbeck) plants irrigated with relatively high boron laden channel waters (LCI) and with well waters (LWI) which contain lower amounts of boron. The leaves of the plants irrigated with channel water were found to contain twice the amount of boron compared with those irrigated with well waters. Boron content of leaves in both groups were approximately ten times the boron content in the soil on which they are grown. In the leaves of the plants irrigated with channel waters there were approximately 50% chlorophyll loss and higher chlorophyll a/b and caretonoid/chlorophyll ratios. In the excessive boron containing leaves was found higher soluble protein and carbohydrate contents, but lower determined free proline value. In plants that irrigated with high boron laden channel water significantly lower -tocopherol content and two fold higher ascorbate concentration were determined. The lower activities of catalase and glutathione reductase enzymes and higher total superoxide dismutase activity were measured in high boron content leaves. The retardation of growth due to boron toxicity can be attributed to the chlorophyll loss and inhibition of the carbohydratemetabolism. Boron at toxic level may cause the cell membrane lipids to be damaged by the free radicals by decreasing the -tocopherol levels. The increase in the ascorbate concentration may have a vital role in the protection of the inner cell structures against the boron toxicity.  相似文献   

14.
Hyperthermia induces several cellular responses leading to morphological changes, cell detachment and death. Loss of integrins from the cell surface after acute heat-treatment may block several physiological signalling pathways, but whether the assembly network between integrin and cytoskeletal actin is perturbed during hyperthermic treatment is unknown. In this study we tested this hypothesis by evaluating cell morphology, protein cytoskeletal profile and integrin CD11a content in both adherent and floating SK-N-MC human neuroblastoma cells. Morphological and cytometric analyses confirmed that hyperthermia is an effective apoptotic trigger, revealing the typical chromatin margination, cell shape changes and 7-AAD incorporation. After hyperthermia, cytoskeletal proteins showed an increase of high-molecular-weight aggregates and a significant decrease of both actin and CD11a content with respect to control cells. The integrin CD11a and membrane-bound actin alterations found in detached floating neuroblastoma cells recovered after heat-shock may cause the cytoskeletal abnormalities related to the observed surface cell rounding/blebbing and anoikis, early events of hyperthermia-induced programmed cell death.  相似文献   

15.
ATP depletion causes necrosis in mammalian cells. However, a previous heat shock can protect cells from the effects of energy deprivation, probably as a result of the synthesis and accumulation of heat-shock proteins (hsps). We propose that hsps protect ATP-depleted cells from rapid necrotic death by inhibiting the aggregation of cytoskeletal proteins that occurs when ATP synthesis is blocked.  相似文献   

16.
Two experiments were conducted with weanling Sprague–Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets that contained an average of 0.05 mg (experiment 1) or 0.15 mg (experiment 2) boron/kg. In experiment 2, some ground corn was replaced by sucrose and fructose to increase oxidative stress. The dietary variables were supplemental 0 (boron-deprived) or 3 (boron-adequate) mg boron/kg and different fat sources (can affect the response to boron) of 75 g corn oil/kg or 65 g fish (menhaden) oil/kg plus 10 linoleic acid/kg. When euthanized at age 20 (experiment 1) and 18 (experiment 2) weeks, rats fed the low-boron diet were considered boron-deprived because they had decreased boron concentrations in femur and kidney. Boron deprivation regardless of dietary oil increased plasma cysteine and homocysteine and decreased liver S-adenosylmethionine, S-adenosylhomocysteine, and spermidine. Plasma concentration of 8-iso-prostaglandin F (indicator of oxidative stress) was not affected by boron, but was decreased by feeding fish oil instead of corn oil. Fish oil instead of corn oil decreased S-adenosylmethionine, increased spermidine, and did not affect S-adenosylhomocysteine concentrations in liver. Additionally, fish oil versus corn oil did not affect plasma homocysteine in experiment 1, and slightly increased it in experiment 2. The findings suggest that boron is bioactive through affecting the formation or utilization of S-adenosylmethionine. Dietary fatty acid composition also affects S-adenosylmethionine formation or utilization, but apparently through a mechanism different from that of boron.  相似文献   

17.
Boron (B) deficiency greatly limits plants' growth and development. Since the root is the organ that first senses the deficiency, we have analyzed the adaptive responses of Lupinus albus roots to long-term B deficiency. Large morphological differences were observed between plants grown with or without B, and 265 polypeptides were found to be responsive to B deficiency out of a total of 406 polypeptides detected by two-dimensional electrophoresis in the L. albus root proteome. By using mass spectrometry techniques we were able to securely identify 128 of the responsive polypeptides that are related to cell wall metabolism, cell structure, defense, energy pathways and protein metabolism. The detection of multiple peptide isoforms is striking, suggesting that protein modification may have an important contribution during the plant response to long-term B deficiency. Furthermore, detected changes in cytoskeletal associated proteins indicate altered cytoskeletal biosynthesis and suggest that B may have an important contribution in this process.  相似文献   

18.

Background  

14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling.  相似文献   

19.
Previous studies have shown that glucose deprivation-induced cell death is associated with apoptosis, which is characterized by cellular membrane blebbing in multi-drug-resistant human breast carcinoma MCF-7/ADR cells. In this study, we investigated the mechanism of glucose deprivation-induced cytoskeletal reorganization, which is known to be responsible for the morphological alterations. An increase in the formation of focal adhesion and stress fibers was observed during the early period of glucose deprivation (1-2 h). However, a disappearance of focal adhesion complexes and a loss of stress fiber formation along with membrane blebbing were observed when glucose deprivation continued. These alterations were delayed in MCF-7/ADR cells transfected with bcl-2 and completely suppressed by treatment with an antioxidant, N-acetyl-L-cysteine. These results indicated that glucose deprivation-induced oxidative stress caused the cytoskeletal reorganization. The glucose deprivation-induced alteration of cytoskeletal organization was further investigated by studying a modification of paxillin, one of the focal adhesion proteins. Immunoblotting with anti-paxillin antibody showed that the paxillin band shifted from 68 kDa to about 80 kDa during 1-4 h of glucose deprivation. The mobility shift indicated the modification of paxillin. This possibility was further studied by an immunoprecipitation assay with anti-paxillin/anti-phosphotyrosine antibody and phosphoamino acid analysis (PAA). The immunoprecipitation study revealed that the level of tyrosine phosphorylation of paxillin was maintained for 2 h and then markedly decreased without a change in the total level of paxillin. The PAA study showed that paxillin is dephosphorylated on tyrosine concurrent with phosphorylation on serine/threonine. Expression of a dominant-negative mutant of c-Jun NH(2)-terminal kinase (JNK1) suppressed glucose deprivation-induced JNK1 activation, PTP-PEST gene expression, and alteration of paxillin. Taken together, these results suggest that the alteration of the phosphorylation/dephosphorylation of paxillin may be related to the cytoskeletal reorganization and these events are mediated by glucose deprivation-induced oxidative stress and the stress-activated protein kinase signal transduction pathway.  相似文献   

20.
The availability of potassium to the plant is highly variable, due to complex soil dynamics, which are strongly influenced by root-soil interactions. A low plant potassium status triggers expression of high affinity K+ transporters, up-regulates some K+ channels, and activates signalling cascades, some of which are similar to those involved in wounding and other stress responses. The molecules that signal low K+ status in plants include reactive oxygen species and phytohormones, such as auxin, ethylene and jasmonic acid. Apart from up-regulation of transport proteins and adjustment of metabolic processes, potassium deprivation triggers developmental responses in roots. All these acclimation strategies enable plants to survive and compete for nutrients in a dynamic environment with a variable availability of potassium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号