首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Pulses in two slow conducting systems, the ectodermal SS 1 and the endodermal SS 2, were recorded during shell-climbing behaviour. The mean pulse interval of SS 1 pulses was 7-4 s and that of SS 2 pulses was 6-4 s. Activity in both systems may arise as a sensory response of tentacles to shell contact, but the SS 1 and SS 2 may not share the same receptors. 2. Electrical stimulation of the SS 1 and SS 2 together, at a frequency of 1 shock every 5 s, elicits shell-climbing behaviour in the absence of a shell. 3. Low-frequency nerve-net activity (about 1 pulse every 15 s) accompanies column bending during both normal and electrically elicited responses. This activity probably arises as a result of column bending and is not due to a sensory response to the shell.  相似文献   

2.
A series of simple models to explain adaptation in a sensory system based on reversible covalent modification is developed. The models are applied to the reversible methylation of chemoreceptors in bacteria and by analogy to other sensory transduction systems. The receptor modification system exhibits sensing and adaptation, i.e. raising the stimulus to a new level generates a transient response followed by a return to prestimulus behavior. By means of an analytical solution of the kinetic equation that governs the evolution of the receptor system. an exact expression is obtained for the time required for adaptation. The results account for the most conspicuous properties of the bacterial sensory system; namely, the response times in relation to stimulus changes, the proportionality of receptor modification to receptor occupancy, and the additivity of response times. The analysis indicates how these properties depend upon the parameters of the system, e.g. the rates of covalent modification and demodification, the accuracy of the detector, and the molecular nature of the response regulator. The theory developed for analysis of the bacterial system revealed properties that will be applicable to any system processing sensory information.  相似文献   

3.
Summary Diffuse and synaptic nerve nets are present in the coenenchymal mesoglea and ectoderm of Muricea and Lophogorgia colonies. The nerve nets extend into the polyp column and tentacles maintaining a subectodermalmesogleal position. The density of nerve elements is low in comparison with similar nerve nets found in pennatulids.In the column of the polyp anthocodium, and throughout the oral disk region, neurons cross the mesoglea and enter the polyp endoderm. These neurons presumably connect with the endodermal nerve net which innervates the septal musculature. The trans-mesogleal neurons probably represent the connection between colonial and polyp nervous systems.In the tentacles, longitudinal ectodermal musculature is present with an overlying nerve plexus. These muscles and nerves, as well as tentacular sensory cells, are well represented in the oral side of the tentacles only.Presumed sensory cells form ciliary cone complexes in which one cell possesses an apical cilium. The other cells as well as the centrally located nematocyte contribute microvilli to the cone. The basal portion of the sensory cells is drawn into one or more neurite-like processes which enter the ectodermal nerve plexus. Similar processes form synapses with longitudinal muscle cells and nematocytes. The sensory cells of the ciliary cones presumably include chemoreceptors which can activate or modify nematocyst discharge, local muscle twitches, and tentacle bending.This work was supported by Office of Naval Research Contract N00014-75-C-0242, NSF Grant BMS 74-23242 and General Research Funds of the University of California, Santa Barbara. We wish to thank Dr. Steven K. Fisher for the use of facilities in his lab. This paper is part of a thesis to be submitted by R.A.S. to the Department of Biological Sciences, University of California, Santa Barbara in partial fulfillment of the requirements for the Ph. D.  相似文献   

4.
1. Single electrical shocks to the column sometimes elicit a series of 1-6 pulses in the SS1 (ectodermal slow system) but the first pulse does not appear until 5-28 s after stimulation. These pulses occur in addition to the early SS1 pulse which follows every shock and which has a conduction delay of less than 1 s. 2. The threshold of the delayed SS1 response is different from the thresholds of the three known conducting systems (through-conducting nerve net, SS1, and SS2). 3. In the case of stimulation of the column, the delayed SS1 pulses do not arise at the point of stimulation but probably originate in the tentacles or upper column. The pulse origin can shift during a single burst. 4. The pathway from the point of stimulation to the site of origin of delayed SS1 pulses is endodermal. We propose that this pathway represents a fourth conducting system (Delayed Initiation System--DIS). The DIS must connect, across the mesogloea, with the ectodermal SS1. The long pulse delay and repetitive firing may derive from pacemaker activity in the DIS. The DIS pacemakers closely resemble the pacemakers connected to the through-conducting nerve net. The DIS may be neuronal. 5. Delayed SS1 pulse bursts from unattached anemones showed an earlier onset, and more pulses/burst, than those from attached anemones. 6. Delayed SS1 pulses can also be evoked by electrical, and in some cases mechanical, stimulation of the pedal disc, tentacles, and pharynx, but there are regional differences in the number of pulses evoked, in their delay, and in their site of origin.  相似文献   

5.
Adaptability is an essential property of many sensory systems, enabling maintenance of a sensitive response over a range of background stimulus levels. In bacterial chemotaxis, adaptation to the preset level of pathway activity is achieved through an integral feedback mechanism based on activity-dependent methylation of chemoreceptors. It has been argued that this architecture ensures precise and robust adaptation regardless of the ambient ligand concentration, making perfect adaptation a celebrated property of the chemotaxis system. However, possible deviations from such ideal adaptive behavior and its consequences for chemotaxis have not been explored in detail. Here we show that the chemotaxis pathway in Escherichia coli shows increasingly imprecise adaptation to higher concentrations of attractants, with a clear correlation between the time of adaptation to a step-like stimulus and the extent of imprecision. Our analysis suggests that this imprecision results from a gradual saturation of receptor methylation sites at high levels of stimulation, which prevents full recovery of the pathway activity by violating the conditions required for precise adaptation. We further use computer simulations to show that limited imprecision of adaptation has little effect on the rate of chemotactic drift of a bacterial population in gradients, but hinders precise accumulation at the peak of the gradient. Finally, we show that for two major chemoeffectors, serine and cysteine, failure of adaptation at concentrations above 1 mM might prevent bacteria from accumulating at toxic concentrations of these amino acids.  相似文献   

6.
Motile microorganisms rapidly respond to changes in various physico-chemical gradients by directing their motility to more favorable surroundings. Energy generation is one of the most important parameters for the survival of microorganisms in their environment. Therefore it is not surprising that microorganisms are able to monitor changes in the cellular energy generating processes. The signal for this behavioral response, which is called energy taxis, originates within the electron transport system. By coupling energy metabolism and behavior, energy taxis is fine-tuned to the environment a cell finds itself in and allows efficient adaptation to changing conditions that affect cellular energy levels. Thus, energy taxis provides cells with a versatile sensory system that enables them to navigate to niches where energy generation is optimized. This behavior is likely to govern vertical species stratification and the active migration of motile cells in response to shifting gradients of electron donors and/or acceptors which are observed within microbial mats, sediments and soil pores. Energy taxis has been characterized in several species and might be widespread in the microbial world. Genome sequencing revealed that many microorganisms from aquatic and soil environments possess large numbers of chemoreceptors and are likely to be capable of energy taxis. In contrast, species that have a fewer number of chemoreceptors are often found in specific, confined environments, where relatively constant environmental conditions are expected. Future studies focusing on characterizing behavioral responses in species that are adapted to diverse environmental conditions should unravel the molecular mechanisms underlying sensory behavior in general and energy taxis in particular. Such knowledge is critical to a better understanding of the ecological role of energy taxis.  相似文献   

7.
Fine structural study indicates that the neuromuscular system of stage I polyps of Aurelia aurita is exclusively ectodermal. The three major muscle fields are the radial muscles of the oral disc, the longitudinal muscles of the tentacles, and the muscle cords of the septae and the column; the muscle fields are in physical continuity at the peristomial pits and share a common innervation and type of myofibril. The myofibril is striated in the tentacle base, in the outer oral disc, and in the upper part of the muscle cord; it grades into a smooth muscle toward the tentacle tip, the mouth, and the lower part of the cord. There is a fourth field of longitudinal smooth muscle in the pharynx. The nervous system consists of an epithelial sensory cell in the tentacle and a single type of neuron found in the subepithelial layer of the tentacle, oral disc, and muscle cord. The lack of gap junctions suggests that there is no nonnervous conduction system. The subepithelial layer also contains three types of fibers and a type of soma which cannot be characterized as neuronal. The soma is identified as the “neurosecretory cell” described in Chrysaora. The absence of neuromuscular elements in the column and stolon distinguishes the Aurelia aurita collected from Washington, USA, from English polyps previously described.  相似文献   

8.
The bacterial chemotaxis system is one of the most extensively studied signal transduction systems in biology. The response regulator CheY controls flagellar rotation and is phosphorylated by the CheA histidine kinase to its active form. CheC is a CheY-P phosphatase, and this activity is enhanced in a CheC-CheD heterodimer. CheC is also critical for chemotactic adaptation, the return to the prestimulus system state despite persistent attractant concentrations. Here, CheC point mutants were examined in Bacillus subtilis for in vivo complementation and in vitro activity. The mutants were identified separating the three known abilities of CheC: CheD binding, CheY-P binding, and CheY-P phosphatase activity. Remarkably, the phosphatase ability was not as critical to the in vivo function of CheC as the ability to bind both CheY-P and CheD. Additionally, it was confirmed that CheY-P increases the affinity of CheC for CheD, the later of which is known to be necessary for receptor activation of CheA. These data suggest a model of CheC as a CheY-P-induced regulator of CheD. Here, CheY-P would cause CheC to sequester CheD from the chemoreceptors, inducing adaptation of the chemotaxis system. This model represents the first plausible means for feedback from the output of the system, CheY-P, to the receptors.  相似文献   

9.
Motile prokaryotes use a sensory circuit for control of the motility apparatus in which ligand-responsive chemoreceptors regulate phosphoryl flux through a modified two-component signal transduction system. The chemoreceptors exhibit a modular architecture, comprising an N-terminal sensory module, a C-terminal output module, and a HAMP domain that connects the N- and C-terminal modules and transmits sensory information between them via an unknown mechanism. The sensory circuits mediated by two chemoreceptors of Bacillus subtilis have been studied in detail. McpB is known to regulate chemotaxis towards the attractant asparagine in a CheD-independent manner, whereas McpC requires CheD to regulate chemotaxis towards the attractant proline. Although CheD is a phylogenetically widespread chemotaxis protein, there exists only a limited understanding of its function. We have constructed chimeras between McpB and McpC to probe the role of CheD in facilitating sensory transduction by McpC. We found that McpC can be converted to a CheD-independent receptor by the replacement of one-half of its HAMP domain with the corresponding sequence from McpB, suggesting that McpC HAMP domain function is complex and may require intermolecular interactions with the CheD protein. When considered in combination with the previous observation that CheD catalyzes covalent modification of the C-terminal modules of B. subtilis receptors, these results suggest that CheD may interact with chemoreceptors at multiple, functionally distinct sites.  相似文献   

10.
Control of bacterial chemotaxis   总被引:8,自引:3,他引:5  
Bacterial chemotaxis, which has been extensively studied for three decades, is the most prominent model system for signal transduction in bacteria. Chemotaxis is achieved by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein, CheY. This protein is activated by a stimulus-dependent phosphorylation mediated by an autophosphorylatable kinase (CheA) whose activity is controlled by chemoreceptors. Upon phosphorylation, CheY dissociates from its kinase, binds to the switch at the base of the flagellar motor, and changes the motor rotation from the default direction (counter-clockwise) to clockwise. Phosphorylation may also be involved in terminating the response. Phosphorylated CheY binds to the phosphatase CheZ and modulates its oligomeric state and thereby its dephosphorylating activity. Thus CheY phosphorylation appears to be involved in controlling both the excitation and adaptation mechanisms of bacterial chemotaxis. Additional control sites might be involved in bacterial chemotaxis, e.g. lateral control at the receptor level, control at the motor level, or control by metabolites that link central metabolism with chemotaxis.  相似文献   

11.
Bacterial chemotaxis is mediated by signalling complexes of chemoreceptors, histidine kinase CheA and coupling protein CheW. Interactions in complexes profoundly affect the kinase. We investigated effects of these interactions on chemoreceptors by comparing receptors alone and in complexes. Assays of initial rates of methylation indicated that signalling complexes shifted receptor conformation towards the methylation-on, higher-ligand-affinity, kinase-off state, tuning receptors for greater sensitivity. In contrast, transmembrane and conformational signalling within chemoreceptors was essentially unaltered, consistent with other evidence identifying receptor dimers as the fundamental units of such signalling. In signalling complexes, coupling of ligand binding to kinase activity is cooperative and the dynamic range of kinase control expanded > 100-fold by receptor adaptational modification. We observed no cooperativity in influence of ligand on receptor conformation, only on kinase activity. However, receptor modification generated increased dynamic range in a stepwise fashion, partly in coupling ligand to receptor conformation and partly in coupling receptor conformation to kinase activity. Thus, receptors and kinase were not equivalently affected by interactions in signalling complexes or by ligand binding and adaptational modification, indicating asymmetrical coupling between them. This has implications for mechanisms of precise adaptation. Coupling might vary, providing a previously unappreciated locus for sensory control.  相似文献   

12.
The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures.  相似文献   

13.
The long antennal flagellum of Neoconocephalus ensiger is covered with many sharp-tipped hairs that appear to be non-innervated; thick-walled chemoreceptors, that may also have a tactile function; thin-walled chemoreceptors of several kinds and coeloconic chemoreceptors. All of the chemoreceptors are innervated by small groups of neurons. The first flagellar subsegment is unusual in that it bears a small protuberance on its latero-ventral surface. This marks the site of the attachment, internally, of a scoloparium containing about eleven scolopales in which the dendrites of some 23 sensory neurons terminate. The most distal subsegment lacks the scoloparium reported earlier for the grasshopper. No conspicuous difference between the antennae of males and of females was found.  相似文献   

14.
The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues.  相似文献   

15.
Several neural and vascular mechanisms regulate the sensitivity of carotid body chemoreceptors to hypoxia, hypercapnia, and acidosis. Factors that control blood flow and oxygen delivery in the carotid body along with those that augment or diminish catecholamine release from glomus cells can have major effects on chemoreceptor function. In addition, the sensory nerves themselves may participate in the regulation of chemoreceptor sensitivity. A portion of the carotid body's sensory nerves are presynaptic to glomus cells. In response to stimulation, the sensory nerve terminals exhibit ultrastructural changes that resemble changes associated with increased release of transmitter from motor nerves: 1) the number of small (synaptic) vesicles decreases; and 2) coated vesicles and coated regions of cisternal membrane increase in number during stimulation. If sensory nerves of the carotid body release a neurotransmitters, sensory nerve activity could influence glomus cell secretion of catecholamines or other substances tha modify chemoreceptor sensitivity. Such an effect could be produced in the carotid body by hypoxia and other conditions that stimulate the sensory nerves or it could result from antidromic activity evoked in the sensory nerves by primary afferent depolarization of their terminals in the CNS.  相似文献   

16.
Summary Antidromic electrical stimulation of the lingual branch of the glossopharyngeal (IX) nerve of the frog was carried out while recording intracellular potentials of taste disc cells.Antidromic activation of sensory fibers resulted in depolarization of cells of the upper layer of the disc and most commonly in hyperpolarization of the cells in the lower layer. These changes in potential exhibited latencies greater than 1 s (Fig. 3), and thus cannot be due to electrotonic effects of action potentials in terminals of IX nerve fibers, which have much shorter conduction times. These cell potentials also showed summation, adaptation and post-stimulus rebound (Figs. 3, 4).Depending upon the chemical stimulus used, antidromic activity produced either depression or enhancement of gustatory fiber discharge in response to taste stimuli (Fig. 5).Alteration of the resting membrane potential by current injection did not significantly modify the antidromically evoked potentials (Fig. 8), whereas chemical stimulation of the tongue did (Fig. 7), indicating that these potential changes are not the result of passive electrical processes.These experimental results indicate that the membrane potential of taste disc cells can be modified by antidromic activity in their afferent nerves. This mechanism may be responsible for peripheral interactions among gustatory units of the frog tongue.The research was supported in part by NIH grant NS-09168.  相似文献   

17.
Dif and Frz, two Myxococcus xanthus chemosensory pathways, are required in phosphatidylethanolamine (PE) chemotaxis for excitation and adaptation respectively. DifA and FrzCD, the homologues of methyl-accepting chemoreceptors in the two pathways, were examined for methylation in the context of chemotaxis and inter-pathway interactions. Evidence indicates that DifA may not undergo methylation, but signals transmitting through DifA do modulate FrzCD methylation. Results also revealed that M. xanthus possesses Dif-dependent and Dif-independent PE-sensing mechanisms. Previous studies showed that FrzCD methylation is decreased by negative chemostimuli but increased by attractants such as PE. Results here demonstrate that the Dif-dependent sensory mechanism suppresses the increase in FrzCD methylation in attractant response and elevates FrzCD methylation upon negative stimulation. In other words, FrzCD methylation is governed by opposing forces from Dif-dependent and Dif-independent sensing mechanisms. We propose that the Dif-independent but Frz-dependent PE sensing leads to increases in FrzCD methylation and subsequent adaptation, while the Dif-dependent PE signalling suppresses or diminishes the increase in FrzCD methylation to decelerate or delay adaptation. We contend that these antagonistic interactions are crucial for effective chemotaxis in this gliding bacterium to ensure that adaptation does not occur too quickly relative to the slow speed of M. xanthus movement.  相似文献   

18.
Schwab W  Funk RH 《Acta anatomica》1998,163(4):184-190
BACKGROUND: The innervation of skeletal tissues by sensory nerves is poorly understood - especially of nerve fibres which reach into the bony and cartilaginous tissue. METHODS: Samples of rat cartilaginous tissues from different locations (knee joint, vertebral column, temporomandibular joint) were fixed by perfusion and decalcified. The distribution of protein gene product (PGP) 9.5-, calcitonin gene-related peptide (CGRP)- and tachykinin (TK)-immunoreactive axons was analysed using fluorescence immunohistochemistry. RESULTS: Nerve fibres were detected in the outer regions of the hyaline cartilage of the knee joint, in the hyaline cartilage of the vertebral body, in the fibrocartilage of the intervertebral disc and menisci, and in the articular disc of the temporomandibular joint. Predominantly, they were found to be CGRP-immunoreactive. CONCLUSION: The neuropeptidergic innervation of the hyaline cartilage in different locations and the presence of nerve fibres in the fibrocartilage might indicate that in addition to the classical neuronal afferent and efferent pathway these fibres may also mediate trophic actions like tissue adaptation and repair.  相似文献   

19.
Membrane receptors communicate between the external world and the cell interior. In bacteria, these receptors include the transmembrane sensor kinases, which control gene expression via their cognate response regulators, and chemoreceptors, which control the direction of flagellar rotation via the CheA kinase and CheY response regulator. Here, we show that a chimeric protein that joins the ligand-binding, transmembrane and linker domains of the NarX sensor kinase to the signalling and adaptation domains of the Tar chemoreceptor of Escherichia coli mediates repellent responses to nitrate and nitrite. Nitrate induces a stronger response than nitrite and is effective at lower concentrations, mirroring the relative sensitivity to these ligands exhibited by NarX itself. We conclude that the NarX-Tar hybrid functions as a bona fide chemoreceptor whose activity can be predicted from its component parts. This observation implies that ligand-dependent activation of a sensor kinase and repellent-initiated activation of receptor-coupled CheA kinase involve a similar transmembrane signal.  相似文献   

20.
The bacterial strategy of chemotaxis relies on temporal comparisons of chemical concentrations, where the probability of maintaining the current direction of swimming is modulated by changes in stimulation experienced during the recent past. A short-term memory required for such comparisons is provided by the adaptation system, which operates through the activity-dependent methylation of chemotaxis receptors. Previous theoretical studies have suggested that efficient navigation in gradients requires a well-defined adaptation rate, because the memory time scale needs to match the duration of straight runs made by bacteria. Here we demonstrate that the chemotaxis pathway of Escherichia coli does indeed exhibit a universal relation between the response magnitude and adaptation time which does not depend on the type of chemical ligand. Our results suggest that this alignment of adaptation rates for different ligands is achieved through cooperative interactions among chemoreceptors rather than through fine-tuning of methylation rates for individual receptors. This observation illustrates a yet-unrecognized function of receptor clustering in bacterial chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号