首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

2.
Summary We report here the discovery of a family of transposable elements, which we refer to as Fotl elements, in the fungal plant pathogen Fusarium oxysporum. The first element was identified as an insertion in the gene encoding nitrate reductase. It is 1928 by long, has 44 by inverted terminal repeats, contains a large open reading frame and is flanked by a 2 by (TA) target site duplication. This element shares significant structural similarities with a class of transposons that includes Tc1 from Caenorhabditis elegans and therefore represents a new class of transposable elements in fungi.  相似文献   

3.
A. J. Flavell 《Genetica》1992,86(1-3):203-214
Ty1-copia group retrotransposons are among the best studied transposable elements in the eukaryotes. This review discusses the extent of these transposons in the eukaryote kingdoms and compares models for the evolution of these genetic elements in the light of recent phylogenetic data. These data show that the Ty1-copia group is widespread among invertebrate eukaryotes, especially in the higher plant kingdom, where these genetic elements are unusually common and heterogeneous in their sequence. The phylogenetic data also suggest that the present day spectrum of Ty1-copia group retrotransposons has been influenced both by divergence during vertical transmission down evolving lineages and by horizontal transmission between distantly related species. Lastly, the factors affecting Ty1-copia group retrotransposon copy number and sequence heterogeneity in eukaryotic genomes and the effects of transpositional quiescence and defective retrotransposons upon evolution of Ty1-copia group retrotransposons are discussed.  相似文献   

4.
Cell-autonomous genes have been used to monitor the excision of both endogenous transposons in maize andAntirrhinum, and transposons introduced into transgenic plants. In tobacco andArabidopsis, the streptomycin phosphotransferase (SPT) gene reveals somatic excision of the maize transposonActivator (Ac) as green sectors on a white background in cotyledons of seedlings germinated in the presence of streptomycin. Cotyledons of tomato seedlings germinated on streptomycin-containing medium do not bleach, suggesting that a different assay for transposon excision in tomato is desirable. We have tested the use of the spectinomycin resistance (SPEC) gene (aadA) and a Basta resistance (BAR) gene (phosphinothricin acetyltransferase, or PAT) for monitoring somatic excision ofAc in tobacco and tomato. Both genetic and molecular studies demonstrate that genotypically variegated individuals that carry clones of cells from whichAc orDs have excised from either SPEC or BAR genes, can be phenotypically completely resistant to the corresponding antibiotic. This demonstrates that these genes act non-cell-autonomously, in contrast to the SPT gene in tobacco. Possible reasons for this difference are discussed.  相似文献   

5.
A PCR assay was employed to detect sequences homologous to the transposase gene of the Tc1 family of transposable elements in a wide variety of animals. Amplification products of the appropriate size were obtained from most insects (92 of 108 examined; 85%), most other invertebrates (33 of 43; 77%), and many vertebrates (18 of 36; 50%). Sequencing a sample of cloned PCR products from eight insects, one hydra, and two frogs revealed that each had multiple distinct members of the family in their genomes. In the most extreme case, the horn fly Haematobia irritans yielded evidence of seventeen distinct types of Tc1 family elements. Most of the sequences obtained indicate that the elements are within the range of variation already known from fungi, nematodes, files, fish and frogs. Some, however, had novel length variants or divergent sequences, indicating that they represent new subfamilies of these transposons. These results indicate that this family of transposons is extremely common in animal genomes, with multiple representatives in most genomes.  相似文献   

6.
Summary We have analyzed the footprints left by a single Ac transposable element during its intragenic transposition to different positions in the maize P gene. One site appears to have been visited twice by transposons, indicating that it may be an insertion hot spot. Implications of this finding for the origin of the P-vv allele are discussed. Analysis of transposon footprints may prove generally useful for establishing pedigree relationships among gene alleles.  相似文献   

7.
Tn163 is a transposable element identified in Rhizobium leguminosarum bv. viciae by its high insertion rate into positive selection vectors. The 4.6 kb element was found in only one further R. leguminosarum bv. viciae strain out of 70 strains investigated. Both unrelated R. leguminosarum bv. viciae strains contained one copy of the transposable element, which was localized in plasmids native to these strains. DNA sequence analysis revealed three large open reading frames (ORFs) and 38 bp terminal inverted repeats. ORF1 encodes a putative protein of 990 amino acids displaying strong homologies to transposases of class 11 transposons. ORF2, transcribed in the opposite direction, codes for a protein of 213 amino acids which is highly homologous to DNA invertases and resolvases of class II transposons. Homology of ORF1 and ORF2 and the genetic structure of the element indicate that Tn163 can be classified as a class II transposon. It is the first example of a native transposon in the genus Rhizobium. ORF3, which was found not to be involved in the transposition process, encodes a putative protein (256 amino acids) of unknown function. During transposition Tn163 produced direct repeats of 5 bp, which is typical for transposons of the Tn3 family. However, one out of the ten insertion sites sequenced showed a 6 by duplication of the target DNA; all duplicated sequences were A/T rich. Insertion of Tn163 into the sacB gene revealed two hot spots. Chromosomes of different R. leguminosarum bv. viciae strains were found to be highly refractory to the insertion of Tn163.  相似文献   

8.
Brownlie JC  Whyard S 《Genetica》2005,125(2-3):243-251
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152–367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4’s ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.  相似文献   

9.
10.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Butler MG  Chakraborty SA  Lampe DJ 《Genetica》2006,127(1-3):351-366
Mariner family transposons are perhaps the most widespread transposable elements of eukaryotes. While we are beginning to understand the precise mechanism of transposition of these elements, the structure of their transposases are still poorly understood. We undertook an extensive mutagenesis of the N-terminal third of the transposase of the Himar1 mariner transposon to begin the process of determining the structure and evolution of mariner transposases. N and C-terminal deletion analyses localized the DNA binding domain of Himar1 transposase to the first 115 amino acids. Alanine scanning of 23 selected sites within this region uncovered mutations that not only affected DNA binding but DNA cleavage as well. The behavior of other mutations strongly suggested that the N-terminus is also involved in multimerization of the transposase on a single inverted terminal repeat and in paired ends complex formation which brings together the two ends of the transposon. Finally, two hyperactive mutations at conserved sites suggest that mariner transposases are under a pattern of stabilizing selection in nature with regard to how efficiently they mediate transposition, resulting in a population of “average” transposons.  相似文献   

12.
Summary The molecular cloning and nucleotide sequence of elements from potato and pepper that are related to the recently identified Tst1 element are described. Sequence analysis reveals considerable conservation of sequences internal to both the Tst1 element and two of the related elements identified here. In six potato clones analysed, the II by inverted repeat first identified in the Tst1 element is conserved. Several of the elements are flanked by an 8 by direct repeat. DNA fragments which were amplified from several pepper genomes by polymerase chain reaction (PCR) amplification using the inverted repeat as sequence primers also display considerable conservation of sequences internal to the Tst1 element. These data further support the possibility that Tst1 is a non-autonomous transposable element and that Tst1 might be the first example of a transposable element which occurs in several genera of solanaceous plants.  相似文献   

13.
The concept of gene identification and cloning using insertional mutagenesis is well established. Many genes have been isolated using T-DNA transformation or transposable elements. Maize transposable elements have been introduced into heterologous plant species for tagging experiments. The behaviour of these elements in heterologous hosts shows many similarities with transposon behaviour in Zea mays. Site-specific recombination systems from lower organisms have also been shown to function efficiently in plant cells. Combining transposon and site-specific recombination systems in plants would create the possibility to induce chromosomal deletions. This transposition-deletion system could allow the screening of large segments of the genome for interesting genes and may also permit the cloning of the DNA corresponding to the deleted material by the same site-specific recombination reaction in vitro. This methodology may provide a unique means to construct libraries of large DNA clones derived from defined parts of the genome, the phenotypic contribution of which is displayed by the mutant carrying the deletion.  相似文献   

14.
15.
A transposable element has been isolated from the industrially important fungus Aspergillus niger (strain N402). The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. It had inserted at a TA site and appeared to have duplicated the target site upon insertion. The isolated element was found to be 4798 by in length and contained 37-bp inverted, imperfect, terminal repeats (ITRs). The sequence of the central region of the element revealed an open reading frame (designated ORF1) which showed similarity, at the amino acid level, to the transposase of the Tc1/mariner class of DNA transposons. Another sequence within the central region of the element showed similarity to the 3 coding and downstream untranslated region of the amyA gene of A. niger. Sequence homology and structural features indicate that this element, which has been named Ant1 (A. niger transposon 1), is related to the Tc1/mariner group of DNA transposons. Ant1 is apparently present as a single copy in strain N402 of A. niger.  相似文献   

16.
A new transposable element has been isolated from an unstable niaD mutant of the fungus Fusarium oxysporum. This element, called impala, is 1280 nucleotides long and has inverted repeats of 27 bp. Impala inserts into a TA site and leaves behind a footprint when it excises. The inserted element, impala-160, is cis-active, but is probably trans-defective owing to several stop codons and frameshifts. Similarities exist between the inverted repeats of impala and those of transposons belonging to the widely dispersed mariner and Tc1 families. Moreover, translation of the open reading frame revealed three regions showing high similarities with Tc1 from Caenorhabditis elegans and with the mariner element of Drosophila mauritiana. The overall comparison shows that impala occupies an intermediate position between the mariner and Tcl-like elements, suggesting that all these elements belong to the same superfamily. The degree of relatedness observed between these elements, described in different kingdoms, raises the question of their origin and evolution.  相似文献   

17.
The distribution of the transposable elementBari-1 inD. melanogaster andD. simulans was examined by Southern blot analysis and byin situ hybridization in a large number of strains of different geographical origins and established at different times.Bari-1 copies mostly homogeneous in size and physical map are detected in all strains tested. Both inD. melanogaster and inD. simulans a relatively high level of intraspecific insertion site polymorphism is detectable, suggesting that in both speciesBari-1 is or has been actively transposing. The main difference between the two sibling species is the presence of a large tadem array of the element in a well-defined heterochromatic location of theD. melanogaster genome, whereas such a cluster is absent inD. simulans. The presence ofBari-1 elements with apparently identical physical maps in allD. melanogaster andD. simulans strains examined suggests thatBari-1 is not a recent introduction in the genome of themelanogaster complex. Structural analysis reveals unusual features that distinguish it from other inverted repeat transposons, whereas many aspects are similar to the widely distributedTc1 element ofC. elegans.  相似文献   

18.
We estimated the genome size of Korean ginseng ( Panax ginseng C.A. Meyer), a medicinal herb, constructed a Hin dIII BAC library, and analyzed BAC-end sequences to provide an initial characterization of the library. The 1C nuclear DNA content of Korean ginseng was estimated to be 3.33 pg (3.12×103 Mb). The BAC library consists of 106,368 clones with an average size of 98.61 kb, amounting to 3.34 genome equivalents. Sequencing of 2167 BAC clones generated 2492 BAC-end sequences with an average length of 400 bp. Analysis using BLAST and motif searches revealed that 10.2%, 20.9% and 3.8% of the BAC-end sequences contained protein-coding regions, transposable elements and microsatellites, respectively. A comparison of the functional categories represented by the protein-coding regions found in BAC-end sequences with those of Arabidopsis revealed that proteins pertaining to energy metabolism, subcellular localization, cofactor requirement and transport facilitation were more highly represented in the P. ginseng sample. In addition, a sequence encoding a glucosyltransferase-like protein implicated in the ginsenoside biosynthesis pathway was also found. The majority of the transposable element sequences found belonged to the gypsy type (67.6%), followed by copia (11.7%) and LINE (8.0%) retrotransposons, whereas DNA transposons accounted for only 2.1% of the total in our sequence sample. Higher levels of transposable elements than protein-coding regions suggest that mobile elements have played an important role in the evolution of the genome of Korean ginseng, and contributed significantly to its complexity. We also identified 103 microsatellites with 3–38 repeats in their motifs. The BAC library and BAC-end sequences will serve as a useful resource for physical mapping, positional cloning and genome sequencing of P. ginseng.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

19.
Ponce R 《Genetica》2007,131(3):315-324
Transposable elements comprise a considerable part of eukaryotic genomes, and there is increasing evidence for their role in the evolution of genomes. The number of active transposable elements present in the host genome at any given time is probably small relative to the number of elements that no longer transpose. The elements that have lost the ability to transpose tend to evolve neutrally. For example, non-LTR retrotransposons often become 5′ truncated due to their own transposition mechanism and hence lose their ability to transpose. The resulting transposons can be characterized as “dead-on-arrival” (DOA) elements. Because they are abundant and ubiquitous, and evolve neutrally in the location where they were inserted, these DOA non-LTR elements make a useful tool to date molecular events. There are four copies of a “dead-on-arrival” RT1C element on the recently formed Sdic gene cluster of Drosophila melanogaster, that are not present in the equivalent region of the other species of the melanogaster subgroup. The life history of the RT1C elements in the genome of D. melanogaster was used to determine the insertion chronology of the elements in the cluster and to date the duplication events that originated this cluster.  相似文献   

20.
This review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号