首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catechol-2,3-dioxygenase (C23O) of Pseudomonas putida, encoded by the xylE gene, was found to be sensitive to hydrogen peroxide (H2O2) when used as a reporter in gene fusion constructs. Exposure of Pseudomonas aeruginosa katA or katA katB mutants harboring katA- or katB-lacZ (encoding β-galactosidase) or -xylE fusion plasmids to H2O2 stimulated β-galactosidase activity, while there was little or no detectable C23O activity in these strains. More than 95% of C23O activity was lost after a 5-min exposure to equimolar H2O2, while a 10,000-fold excess was required for similar inhibition of β-galactosidase. Electron paramagnetic resonance spectra of the nitrosyl complexes of C23O showed that H2O2 nearly stoichiometrically oxidized the essential active-site ferrous ion, thus accounting for the loss of activity. Our results suggest using caution in interpreting data derived from xylE reporter fusions under aerobic conditions, especially where oxidative stress is present or when catalase-deficient strains are used.  相似文献   

2.
3.
Structural genes for catechol 2,3-oxygenase (C23O) were cloned from the TOL plasmids pWW5, pWW14, pWW74, pWW84, and pWW88 isolated from Pseudomonas strains of diverse geographical origins. Each pKT230-based C23O+ recombinant plasmid carried a 2.05-kilobase XhoI insert which showed strong homology in Southern hybridizations with the xylE gene from the archetype TOL plasmid pWW0. Fragments were mapped for restriction endonuclease sites and were classified into two closely related groups on the basis of restriction maps. C23O structural genes were located on cloned fragments by a combination of subcloning and site-specific mutagenesis. All five TOL plasmids examined yielded clones whose maps differed from that of xylE of pWW0 by only a single XbaI site, but in addition plasmids pWW5, pWW74, and pWW88 carried a second, homologous C23O gene with seven further restriction site differences. The remaining plasmids, pWW14 and pWW84, carried a second nonhomologous C23O gene related to the second C23O gene (C23OII) of TOL plasmid pWW15 described previously (H. Keil, M. R. Lebens, and P. A. Williams, J. Bacteriol. 163:248-255, 1985). Thus, each naturally occurring TOL plasmid in this study appears to carry genes for two meta cleavage dioxygenases.  相似文献   

4.
5.
6.
Catechol 2,3-dioxygenase (C23O; EC 1.3.11.2), exemplified by XylE and NahH, catalyzes the ring cleavage of catechol and some substituted catechols. C23O is inactivated at an appreciable rate during the ring cleavage of 4-methylcatechol due to the oxidation of the Fe(II) cofactor to Fe(III). In this study, a C23O exhibiting improved activity against 4-methylcatechol was isolated. To isolate this C23O, diverse C23O gene sequences were PCR amplified from DNA which had been isolated from mixed cultures of phenol-degrading bacteria and subcloned in the middle of a known C23O gene sequence (xylE or nahH) to construct a library of chimeric C23O genes. These chimeric C23O genes were then introduced into Pseudomonas putida possessing some of the toluene catabolic genes (xylXYZLGFJQKJI). When a C23O gene (e.g., xylE) is introduced into this strain, the transformants cannot generally grow on p-toluate because 4-methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of C23O. However, a transformant of this strain capable of growing on p-toluate was isolated, and a chimeric C23O (named NY8) in this transformant was characterized. The rate of enzyme inactivation by 4-methylcatechol was lower in NY8 than in XylE. Furthermore, the rate of the reactivation of inactive C23O in a solution containing Fe(II) and ascorbic acid was higher in NY8 than in XylE. These properties of NY8 might allow the efficient metabolism of 4-methylcatechol and thus allow host cells to grow on p-toluate.  相似文献   

7.
Pseudomonas sp. S-47 expresses catechol 2,3-dioxygenase (C230) catalyzing the conversion of 4-chlorocatechol (4CC) as well as catechol to 5-chloro-2-hydroxymuconic semialdehyde and 2-hydroxymuconic semialdehyde, respectively, through meta-ring cleavage. The xylE gene encoding C230 for meta-cleavage was cloned from strain S-47 and its nucleotide sequence was analyzed. The pRES101 containing the xylE gene exhibited high C230 activity toward catechol and 4CC without altering the substrate specificity from natural strain. The xylE gene was composed of 924 bp and encoded polypeptide of molecular mass 35 kDa containing 307 amino acids. A deduced amino acid sequence of the C230 from strain S-47 exhibited over 80% identity with those of Pseudomonas putida mt-2, Pseudomonas putida G7, and Pseudomonas sp. CF600. However, it shows below 45% identity with those of Pseudomonas cepacia LB400 and Pseudomonas sp. KKS102. The C230 of strain S-47 was conserved in the amino acids (His150, His214, Glu261) for metal binding ligands and those (His199, His242, and Tyr251) for catalytic sites. Therefore, Pseudomonas sp. S-47 can be explained as acting by degrading catechol as well as 4CC by xylE-encoding C230 which was fused by N domain of nahH and C domain of dmpB from other Pseudomonas strains.  相似文献   

8.
9.
Pseudomonas sp. S-47 is capable of degrading catechol and 4-chlorocatechol via the meta-cleavage pathway. XylTE products catalyze the dioxygenation of the aromatics. The xylT of the strain S-47 is located just upstream of the xylE gene. XylT is a typical chloroplast-type ferredoxin, which is characterized by 4 cystein residues that are located at positions 41, 46, 49, and 81. The chloroplast-type ferredoxin of Pseudomonas sp. S-47 exhibited a 98% identity with that of P. putida mt-2 (TOL plasmid) in the amino acid sequence, but only about a 40 to 60% identity with the corresponding enzymes from other organisms. We constructed two recombinant plasmids (pRES1 containing xylTE and pRES101 containing xylE without xylT) in order to examine the function of XylT for the reactivation of the catechol 2,3-dioxygenase (XylE) that is oxidized with hydrogen peroxide. The pRES1 that was treated with hydrogen peroxide was recovered in the catechol 2,3-dioxygenase (C23O) activity about 4 minutes after incubation, but the pRES101 showed no recovery. That means that the typical chloroplast-type ferredoxin (XylT) of Pseudomonas sp. S-47 is involved in the reactivation of the oxidized C23O in the dioxygenolytic cleavage of aromatic compounds.  相似文献   

10.
Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A. tumefaciens cells.  相似文献   

11.
12.
13.
M Bartilson  V Shingler 《Gene》1989,85(1):233-238
Pseudomonas CF600 degrades phenol and some of its methylated derivatives via a plasmid-encoded catabolic pathway. The catechol 2,3-dioxygenase (C23O) enzyme of this pathway catalyses the conversion of catechol to 2-hydroxymuconic semialdehyde. We have determined the nucleotide (nt) sequence of the dmpB structural gene for this enzyme, and expressed and identified its polypeptide product in Escherichia coli. The xylE gene of TOL plasmid pWWO and the nahH gene of plasmid NAH7 encode analogous C23O enzymes. Comparison of these three genes shows homology of 78-81% on the nt level and 83-87% homology on the amino acid level.  相似文献   

14.
15.
Agrobacterium tumefaciens possesses two catalases, a bifunctional catalase-peroxidase, KatA and a homologue of a growth phase regulated monofunctional catalase, CatE. In stationary phase cultures and in cultures entering stationary phase, total catalase activity increased 2-fold while peroxidase activity declined. katA and catE were found to be independently regulated in a growth phase dependent manner. KatA levels were highest during exponential phase and declined as cells entered stationary phase, while CatE was detectable at early exponential phase and increased during stationary phase. Only small increases in H2O2 resistance levels were detected as cells entering stationary phase. The katA mutant was more sensitive to H2O2 than the parental strain during both exponential and stationary phase. Inactivation of catE alone did not significantly change the level of H2O2 resistance. However, the katA catE double mutant was more sensitive to H2O2 during both exponential and stationary phase than either of the single catalase mutants. The data indicated that KatA plays the primary role and CatE acts synergistically in protecting A. tumefaciens from H2O2 toxicity during all phases of growth. Catalase-peroxidase activity (KatA) was required for full H2O2 resistance. The expression patterns of the two catalases in A. tumefaciens reflect their physiological roles in the protection against H2O2 toxicity, which are different from other bacteria.  相似文献   

16.
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were cloned upstream of the reporter gene in pHT3 in order to construct vectors pHT4, pHT5, and pHTA, respectively. Detection of beta-galactosidase activity in time course studies performed with strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA) demonstrated that the reporter gene produced a functional beta-galactosidase in C. acetobutylicum. In addition, time course studies revealed differences in the beta-galactosidase specific activity profiles of strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA), suggesting that the reporter system developed in this study is able to effectively distinguish between different promoters. The stability of the beta-galactosidase produced by the reporter gene was also examined with strains ATCC 824(pHT4) and ATCC 824(pHT5) by using chloramphenicol treatment to inhibit protein synthesis. The data indicated that the beta-galactosidase produced by the lacZ gene from T. thermosulfurogenes EM1 was stable in the exponential phase of growth. In pH-controlled fermentations of ATCC 824(pHT4), the kinetics of beta-galactosidase formation from the ptb promoter and phosphotransbutyrylase formation from its own autologous promoter were found to be similar.  相似文献   

17.
18.
19.
Plasmid constructs pNW1 through pNW6 containing a controllable xylE gene (for catechol 2,3-dioxygenase) were introduced into Streptomyces lividans strains to provide a selectable marker system. xylE functions in S. lividans under the control of bacteriophage lambda promoters lambda pL and lambda pR. Thermoregulated expression of xylE is provided through the lambda repressor cI857. Catechol 2,3-dioxygenase activity was increased 2.8-fold from plasmid construct pNW2 (lambda pL, xylE, cI857) and 9.5- and 7.4-fold from constructs pNW3 (lambda pR, xylE, cI857) and pNW5 (lambda pR, xylE, cI857), respectively, when the temperature was shifted from 28 degrees C to 37 degrees C. The stability of the constructs varied from 4.7% for pNW2 to 99.4% for pNW4 (lambda pL, xylE) over two rounds of sporulation. Marked S. lividans strains released into soil systems retained the XylE phenotype for more than 80 days, depending on the marker plasmid, when examined by a selective plating method. Furthermore, S. lividans harboring plasmid pNW5 was detectable by nucleic acid hybridization at less than 10 CFU g-1 (dry weight) of soil as mycelium and 10(3) CFU g-1 (dry weight) of soil as spores with the xylE marker DNA extracted from soil and amplified by using the polymerase chain reaction.  相似文献   

20.
Plasmid constructs pNW1 through pNW6 containing a controllable xylE gene (for catechol 2,3-dioxygenase) were introduced into Streptomyces lividans strains to provide a selectable marker system. xylE functions in S. lividans under the control of bacteriophage lambda promoters lambda pL and lambda pR. Thermoregulated expression of xylE is provided through the lambda repressor cI857. Catechol 2,3-dioxygenase activity was increased 2.8-fold from plasmid construct pNW2 (lambda pL, xylE, cI857) and 9.5- and 7.4-fold from constructs pNW3 (lambda pR, xylE, cI857) and pNW5 (lambda pR, xylE, cI857), respectively, when the temperature was shifted from 28 degrees C to 37 degrees C. The stability of the constructs varied from 4.7% for pNW2 to 99.4% for pNW4 (lambda pL, xylE) over two rounds of sporulation. Marked S. lividans strains released into soil systems retained the XylE phenotype for more than 80 days, depending on the marker plasmid, when examined by a selective plating method. Furthermore, S. lividans harboring plasmid pNW5 was detectable by nucleic acid hybridization at less than 10 CFU g-1 (dry weight) of soil as mycelium and 10(3) CFU g-1 (dry weight) of soil as spores with the xylE marker DNA extracted from soil and amplified by using the polymerase chain reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号