首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin, a nature ligand for the growth hormone secretagogue receptor (GHS-R), stimulates a release of growth hormone, prolactin and adrenocorticotropic hormone. Also, ghrelin increases food intake in adult rats and humans and exhibits gastroprotective effect against experimental ulcers induced by ethanol or stress. The aim of present study was to examine the influence of ghrelin administration on gastric and duodenal growth and expression of pepsin and enterokinase in young mature rats with intact or removed pituitary. METHODS: Two week after sham operation or hypophysectomy, eight week old Wistar male rats were treated with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose) i.p. twice a day for 4 days. Expression of pepsin in the stomach and enterokinase in the duodenum was evaluated by real-time PCR. RESULTS: In animals with intact pituitary, treatment with ghrelin increased food intake, body weight gain and serum level of growth hormone and insulin-like growth factor-1 (IGF-1). These effects were accompanied with stimulation of gastric and duodenal growth. It was recognized as the significant increase in gastric and duodenal weight and mucosal DNA synthesis. In both organs, ghrelin administered at the dose of 8 nmol/kg caused maximal growth-promoting effect. In contrast to these growth-promoting effects, administration of ghrelin reduced expression of mRNA for pepsin in the stomach and was without effect on expression of mRNA for enterokinase in the duodenum. Hypophysectomy alone lowered serum concentration of growth hormone under the detection limit and reduced serum level of IGF-1 by 90%. These effects were associated with reduction in daily food intake, body weight gain and gastroduodenal growth. In hypophysectomized rats, administration of ghrelin was without significant effect on food intake, body weight gain or growth of gastroduodenal mucosa. Also, serum concentration of growth hormone or IGF-1 was not affected by ghrelin administration in rats with removed pituitary. CONCLUSION: Administration of ghrelin stimulates gastric and duodenal growth in young mature rats with intact pituitary, but inhibits expression of mRNA for pepsin in the stomach. Growth hormone and insulin-like growth factor-1 play an essential role in growth-promoting effects of ghrelin in the stomach and duodenum.  相似文献   

2.
Ghrelin, a 28-residue octanoylated peptide recently isolated from the stomach, exhibits anti-cachectic properties through regulating food intake, energy expenditure, adiposity, growth hormone secretion and immune response. Burn injury induces persistent hypermetabolism and muscle wasting. We therefore hypothesized that ghrelin may also play a role in the pathophysiology of burn-induced cachexia. Overall ghrelin expression in the stomach over 10 days after burn was significantly decreased (p = 0.0003). Total plasma ghrelin was reduced 1 day after burn. Thus, changes in ghrelin synthesis and release may contribute to burn-induced dysfunctions. Ghrelin (30 nmol/rat, i.p.) greatly stimulated 2 h food intake in rats on five separate days after burn and in control rats. On post-burn day 15, plasma growth hormone levels were significantly lower than in controls, and this was restored to normal levels by ghrelin (10 nmol/rat, i.p.). These observations suggest that ghrelin retains its ability to favorably modulate both the peripheral anabolic and the central orexigenic signals, even after thermal injury despite ongoing changes due to prolonged and profound hypermetabolism, suggesting that long-term treatment with ghrelin may attenuate burn-induced dysfunctions.  相似文献   

3.
Ghrelin in growth and development   总被引:5,自引:0,他引:5  
Exogenous administration of ghrelin increases caloric intake and stimulates growth hormone (GH) secretion, two effects that are mediated through binding of ghrelin to the GH secretagogue receptor (GHS-R). In addition, ghrelin is thought to inhibit adipogenesis by GHS-R-independent mechanisms. In adults, ghrelin is mainly produced by the stomach. In contrast, in the fetal and early postnatal period, ghrelin gene expression is abundant in the pancreas but not in the stomach. While knockout animal studies demonstrate that ghrelin is not required for perinatal development under normal nutritional conditions, the characteristics of ghrelin metabolism during fetal development suggest that ghrelin could contribute to the programming of mechanisms involved in energy balance, such as beta-cell maturation, orexigenic pathways and adipogenesis. In humans, ghrelin concentrations progressively decrease during childhood and adolescence, as well as with advancing puberty. In adolescents, similar to adults, ghrelin concentrations are inversely related to body mass index and to circulating insulin. One notable exception is the presence of elevated ghrelin concentrations in subjects with Prader-Willi syndrome, raising the possibility that ghrelin could be part of the etiology of excess food intake in this condition. These data raise a number of fascinating questions on the potential physiologic role of this hormone during growth and development.  相似文献   

4.
Ghrelin is a peptide identified as an endogenous ligand for the growth hormone secretagogue receptor. Studies have shown that ghrelin stimulates growth hormone, promotes food intake and decreases energy expenditure. Furthermore, feeding status seems to influence plasma ghrelin levels, as these are increased during fasting, whereas feeding and oral glucose intake reduce plasma ghrelin. This study examined whether standardized obesity and fasting affect cellular expression of ghrelin. Specimens from the gastrointestinal tract of fed or 18-h fasted, low-fat or high-fat fed (10 weeks on diet) C57BL/6J mice were studied by immunocytochemistry (ICC) for ghrelin and in situ hybridization (ISH) for ghrelin mRNA. Ghrelin was expressed in especially the corpus but also the antrum of the stomach of all groups studied. Cells positive for ghrelin and ghrelin mRNA in the stomach were reduced in high-fat fed mice. In contrast, ghrelin expression was not affected by fasting. The reduction in ghrelin expression in the high-fat fed mice was associated with a reduction in plasma levels of ghrelin, whereas after fasting, when expression rate was not altered, there was an increase in plasma ghrelin. In conclusion, ghrelin is highly expressed in the corpus and antrum of the stomach of C57BL/6J mice. This expression is reduced in obesity, whereas fasting has no effect.  相似文献   

5.
Ghrelin was originally purified and characterized in rats and humans as the first identified endogenous ligand of the growth hormone secretagogue receptor. In mammals, ghrelin is mainly produced in the stomach, with minor levels of ghrelin present in the brain and various other tissues. Ghrelin is involved in the regulation of many physiological functions including the regulation of growth hormone secretion and food intake in mammals. The gene and peptide structures of ghrelin have been recently identified in several fish species. As in mammals, ghrelin mRNA is mainly expressed in the gut of fish. Ghrelin is involved in the regulation of a number of physiological functions, including the regulation of pituitary hormone release and the stimulation of food intake in fish. In this review, we wish to provide an up-to-date discussion on the structure, distribution and functions of ghrelin in fish, in comparison to ghrelin in other vertebrates.  相似文献   

6.
Ghrelin, an acylated 28 amino acid gastric peptide, was isolated from the stomach as an endogenous ligand for growth hormone (GH) secretagogue receptor in 1999. Circulating ghrelin is mainly produced by specific cells in the stomach's oxyntic glands. Ghrelin potently stimulates GH release and food intake and exhibits diverse effects, including ones on glucose metabolism and on secretion and motility of the gastrointestinal tract. Besides these effects on food intake and energy homeostasis, ghrelin is also involved in controlling reproductive functions, and a role for it as a novel regulator of the hypothalamic-pituitary gonadal axis is clearly emerging.We review recent ghrelin research with emphasis on its roles in the reproductive axis.  相似文献   

7.
The stomach hormone ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Systemic administration of ghrelin will cause elevations in growth hormone (GH) secretion, food intake, adiposity, and body growth. Ghrelin also affects insulin secretion, gastric acid secretion, and gastric motility. Several reports indicate that repeated or continuous activation of GHS-R by exogenous GHSs or ghrelin results in a diminished GH secretory response. The purpose of this study was to examine the extent to which the acute stimulation of food intake by exogenous ghrelin is altered by chronic hyperghrelinemia in transgenic mice that overexpress the human ghrelin gene. The present findings show that the orexigenic action of exogenous ghrelin is not diminished by a chronic hyperghrelinemia and indicate that the food ingestive pathway of the GHS-R is not susceptible to desensitization. In contrast, the epididymal fat pad growth response, like the GH response, to exogenous ghrelin is blunted in ghrelin transgenic mice with chronic hyperghrelinemia.  相似文献   

8.
Ghrelin is a novel gut-brain peptide that binds to the growth hormone secretagogue receptor (GHS-R), thereby functioning in the regulation of growth hormone (GH) release and food intake. Ghrelin-producing cells are most abundant in the oxyntic glands of the stomach. The regulatory mechanism that governs the biosynthesis and secretion of ghrelin has not been clarified. We report that ghrelin mRNA expression in the gastric fundus was increased, but that ghrelin peptide content decreased after a 48-h fast. Both values returned to control levels after refeeding. The ghrelin plasma concentration in the gastric vein and systemic venous blood increased after 24- and 48-h fasts. Furthermore, des-octanoylated ghrelin and n-octanoylated ghrelin were found in rat stomach, with the ratio of des-octanoylated ghrelin to n-octanoylated ghrelin markedly increased after fasting. The ghrelin mRNA level in the stomach also increased after administration of insulin and leptin. Conversely, db/db mice, which are deficient in the leptin receptor, had lower ghrelin mRNA levels than control mice. These findings suggest that this novel gastrointestinal hormone plays a role in the regulation of energy balance.  相似文献   

9.
Ghrelin acts in the central nervous system to stimulate gastric acid secretion   总被引:37,自引:0,他引:37  
Ghrelin is a novel acylated peptide that functions in the regulation of growth hormone release and energy metabolism. It was isolated from rat stomach as an endogenous ligand for growth hormone secretagogue receptor. Ghrelin is also localized in the arcuate nucleus of rat hypothalamus. Intracerebroventricular (ICV) administration increases food intake and body weight. We examined the effect of ghrelin on gastric acid secretion in urethane-anesthetized rats and found that ICV administration of ghrelin increased gastric acid output in a dose-dependent manner. Vagotomy and administration of atropine abolished the gastric acid secretion induced by ghrelin. ICV administration of ghrelin also induced c-fos expression in the neurons of the nucleus of the solitary tract and the dorsomotor nucleus of the vagus, which are key sites in the central nervous system for regulation of gastric acid secretion. Our results suggest that ghrelin participates in the central regulation of gastric acid secretion by activating the vagus system.  相似文献   

10.
Ghrelin deficiency does not influence feeding performance   总被引:1,自引:0,他引:1  
Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor that is synthesized predominantly in the stomach. Previous studies demonstrated that ghrelin stimulates growth hormone release and food intake. These data suggested that antagonism of ghrelin could serve as a useful treatment for eating disorders and obesity. To study the role of endogenous ghrelin in feeding performance further, we generated ghrelin-deficient (ghrl(-/-)) mice. Unexpectedly, ghrl(-/-) mice exhibited normal growth, cumulative food intake, reproduction, histological characters, and serum parameters. There were no differences in feeding patterns between ghrl(+/+) and ghrl(-/-) mice. Ghrl(-/-) mice displayed normal responses to scheduled feedings as seen for ghrl(+/+) mice. Memory-related feeding performances of ghrl(-/-) mice were indistinguishable from ghrl(+/+) littermates. These data indicate that ghrelin is not critical for feeding performance.  相似文献   

11.
Ghrelin, a peptide hormone which stimulates growth hormone (GH) release, appetite and adiposity in mammals, was recently identified in fish. In this study, the roles of ghrelin in regulating food intake and the growth hormone (GH)-insulin-like growth factor I (IGF-I) system of rainbow trout (Oncorhynchus mykiss) were investigated in three experiments: 1) Pre- and postprandial plasma levels of ghrelin were measured in relation to dietary composition and food intake through dietary inclusion of radio-dense lead-glass beads, 2) the effect of a single intraperitoneal (i.p.) injection with rainbow trout ghrelin on short-term voluntary food intake was examined and 3) the effect of one to three weeks fasting on circulating ghrelin levels and the correlation with plasma GH and IGF-I levels, growth and lipid content in the liver and muscle was studied. There was no postprandial change in plasma ghrelin levels. Fish fed a normal-protein/high-lipid (31.4%) diet tended to have higher plasma ghrelin levels than those fed a high-protein/low-lipid (14.1%) diet. Plasma ghrelin levels decreased during fasting and correlated positively with specific growth rates, condition factor, liver and muscle lipid content, and negatively with plasma GH and IGF-I levels. An i.p. ghrelin injection did not affect food intake during 12-hours post-injection. It is concluded that ghrelin release in rainbow trout may be influenced by long-term energy status, and possibly by diet composition. Further, in rainbow trout, ghrelin seems to be linked to growth and metabolism, but does not seem to stimulate short-term appetite through a peripheral action.  相似文献   

12.
Somatostatin suppresses ghrelin secretion from the rat stomach   总被引:6,自引:0,他引:6  
Ghrelin is an acylated peptide that stimulates food intake and the secretion of growth hormone. While ghrelin is predominantly synthesized in a subset of endocrine cells in the oxyntic gland of the human and rat stomach, the mechanism regulating ghrelin secretion remains unknown. Somatostatin, a peptide produced in the gastric oxyntic mucosa, is known to suppress secretion of several gastrointestinal peptides in a paracrine fashion. By double immunohistochemistry, we demonstrated that somatostatin-immunoreactive cells contact ghrelin-immunoreactive cells. A single intravenous injection of somatostatin reduced the systemic plasma concentration of ghrelin in rats. Continuous infusion of somatostatin into the gastric artery of the vascularly perfused rat stomach suppressed ghrelin secretion in both dose- and time-dependent manner. These findings indicate that ghrelin secretion from the stomach is regulated by gastric somatostatin.  相似文献   

13.
Ghrelin is a novel growth hormone (GH)-releasing peptide, isolated from the stomach, which has been identified as an endogenous ligand for growth-hormone secretagogues receptor (GHS-R). This peptide also causes a positive energy balance by stimulating food intake and inducing adiposity through growth hormone-independent mechanisms. In addition, ghrelin has some cardiovascular effects, as indicated by the presence of its receptor in blood vessels and the cardiac ventricles. In vitro, ghrelin inhibits apoptosis of cardiomyocytes and endothelial cells. In humans, infusion of ghrelin decreases systemic vascular resistance and increases cardiac output in patients with heart failure. Repeated administration of ghrelin improves cardiac structure and function and attenuates the development of cardiac cachexia in rats with heart failure. These results suggest that ghrelin has cardiovascular effects and regulates energy metabolism through GH-dependent and -independent mechanisms. Thus, administration of ghrelin may be a new therapeutic strategy for the treatment of severe chronic heart failure (CHF).  相似文献   

14.

Background  

Ghrelin is an orexigenic hormone principally produced by the stomach, but also by numerous peripheral tissues including the placenta. Ghrelin acts via growth hormone secretagogue receptors (GHSR-1a) to alter food intake, fat utilization, and cellular proliferation, and has been suggested to play a role in the developmental growth of the fetoplacental unit. The placental expression of ghrelin and its role in ruminant species is not known. We tested the hypotheses that ghrelin and its functional receptor, GHSR-1a, are present in tissues of the ovine placenta, and that their expression is linked to the stage of development.  相似文献   

15.
The pulsatile release of growth hormone (GH) by the anterior pituitary is stimulated by small synthetic molecules termed GH secretagogues (GHS). The receptor for GHS (GHS-R) belongs to the family of G-protein-coupled receptors. An endogenous specific ligand of 28 amino acids has recently been purified from rat stomach, it has been termed 'ghrelin'. Ghrelin demonstrates potent and reproducible GH-releasing activity, as well as significant prolactin-, ACTH- and cortisol-releasing activity. However, its major physiological relevance may relate to energy homeostasis. Peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. In man, intravenous ghrelin was shown to stimulate food intake. The pathophysiological role and the potential clinical use of ghrelin are reviewed.  相似文献   

16.
17.
Andrews ZB 《Peptides》2011,32(11):2248-2255
Ghrelin is a stomach hormone, secreted into the bloodstream, that initiates food intake by activating NPY/AgRP neurons in the hypothalamic acruate nucleus. This review focuses on recent evidence that details the mechanisms through which ghrelin activate receptors on NPY neurons and downstream signaling within NPY neurons. The downstream signaling involves a novel CaMKK-AMPK-CPT1-UCP2 pathway that enhances mitochondrial efficiency and buffers reactive oxygen species in order to maintain an appropriate firing response in NPY. Recent evidence that shows metabolic status affects ghrelin signaling in NPY is also described. In particular, ghrelin does not activate NPY neurons in diet-induced obese mice and ghrelin does not increase food intake. The potential mechanisms and implications of ghrelin resistance are discussed.  相似文献   

18.
Objective: The novel gastric hormone ghrelin has recently been identified as an important modulator of energy homeostasis. Leptin-responsive hypothalamic neuropeptide Y/Agouti-related protein neurons are believed to mediate afferent ghrelin signals. Little is known, however, about ghrelin-induced efferent signals. We therefore investigated if hypothalamic-pituitary axes have a role in transferring ghrelin-induced changes of energy balance to the periphery. Research Methods and Procedures: We subcutaneously injected hypophysectomized, as well as adrenalectomized, thyroidectomized, and sham-operated control rats with GH secretagogues [ghrelin, growth hormone (GH)-releasing peptide] for 1 week. Body weight, food intake, and body composition (chemical carcass analysis) were analyzed and compared with vehicle-treated controls. In addition, we quantified circulating levels of endogenous ghrelin in hypophysectomized and GH–treated normal rats. Results: GH-secretagogue treatment of sham-operated control rats dose-proportionally increased food intake, body weight, and fat mass compared with vehicle-injected controls (p < 0.01). These effects, however, were not observed in ghrelin-treated hypophysectomized, thyroidectomized, or adrenalectomized rats, indicating an essential role for the pituitary axis in ghrelin-induced adiposity. Circulating levels of endogenous ghrelin were reduced by administration of GH in normal rats and were about 3-fold higher in hypophysectomized rats (n = 20, p = 0.001), suggesting a regulatory feedback loop involving the stomach and the pituitary to regulate gastric ghrelin secretion. Discussion: According to these results, the endocrine pituitary is mediating ghrelin-induced changes toward a positive energy balance and is involved in the regulation of ghrelin secretion through a gastro-hypophyseal feedback loop.  相似文献   

19.
Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor. It plays an important role in stimulating growth hormone secretion, food intake, body weight gain and gastric motility. cDNA sequences coding for ghrelin precursor protein (prepro-ghrelin) were isolated from the stomach of a giant panda. Two different mRNA sequences of ghrelin were obtained. The long open reading frame of ghrelin (354 bp) encodes a precursor protein of 117 amino acids with a 23 amino acid signal peptide. The short one (351 bp) encodes a precursor protein of 116 amino acids with the same 23 amino acid signal peptide. The presumed giant panda mature ghrelin proteins also had two forms. Comparative analysis showed that the first and the fourth amino acids (Gly and Phe) were completely conserved and the third amino acid (Ser) was also highly conserved in the mature ghrelin. RT-PCR analysis of giant panda ghrelin mRNA in various tissues revealed high level of expression in stomach, relative lower levels of expression in small intestine, liver and kidney, and no expression in thymus, spleen and heart.  相似文献   

20.
Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号