首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nitric oxide negatively modulates wound signaling in tomato plants   总被引:24,自引:0,他引:24  
Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H(2)O(2)) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H(2)O(2) generated by glucose oxidase and glucose was not blocked by NO, nor was H(2)O(2)-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H(2)O(2) generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H(2)O(2) synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis.  相似文献   

3.
The systemic accumulation of both hydrogen peroxide (H(2)O(2)) and proteinase inhibitor proteins in tomato leaves in response to wounding was inhibited by the NADPH oxidase inhibitors diphenylene iodonium (DPI), imidazole, and pyridine. The expression of several defense genes in response to wounding, systemin, oligosaccharides, and methyl jasmonate also was inhibited by DPI. These genes, including those of four proteinase inhibitors and polyphenol oxidase, are expressed within 4 to 12 hr after wounding. However, DPI did not inhibit the wound-inducible expression of genes encoding prosystemin, lipoxygenase, and allene oxide synthase, which are associated with the octadecanoid signaling pathway and are expressed 0.5 to 2 hr after wounding. Accordingly, treatment of plants with the H(2)O(2)-generating enzyme glucose oxidase plus glucose resulted in the induction of only the later-expressed defensive genes and not the early-expressed signaling-related genes. H(2)O(2) was cytochemically detected in the cell walls of vascular parenchyma cells and spongy mesophyll cells within 4 hr after wounding of wild-type tomato leaves, but not earlier. The cumulative results suggest that active oxygen species are generated near cell walls of vascular bundle cells by oligogalacturonide fragments produced by wound-inducible polygalacturonase and that the resulting H(2)O(2) acts as a second messenger for the activation of defense genes in mesophyll cells. These data provide a rationale for the sequential, coordinated, and functional roles of systemin, jasmonic acid, oligogalacturonides, and H(2)O(2) signals for systemic signaling in tomato plants in response to wounding.  相似文献   

4.
Wound- and systemin-inducible calmodulin gene expression in tomato leaves   总被引:10,自引:0,他引:10  
Using a calmodulin (CaM) cDNA as a probe in northern analyses, transgenic tomato plants that overexpress the prosystemin gene were found to express increased levels of CaM mRNA and protein in leaves compared to wild-type plants. These transgenic plants have been reported previously to express several wound-inducible defense-related genes in the absence of wounding. Calmodulin mRNA and protein levels were found to increase in leaves of young wild-type tomato plants after wounding, or treatment with systemin, methyl jasmonate, or linolenic acid. CaM mRNA appeared within 0.5 h after wounding or supplying young tomato plants with systemin, and peaked at 1 h. The timing of CaM gene expression is similar to the expression of the wound- or systemin-induced lipoxygenase and prosystemin genes, signal pathway genes whose expression have been reported to begin at 0.5–1 h after wounding and 1–2 h earlier than the genes coding for defensive proteinase inhibitor genes. The similarities in timing between the synthesis of CaM mRNA and the mRNAs for signal pathway components suggests that CaM gene expression may be associated with the signaling cascade that activates defensive genes in response to wounding.  相似文献   

5.
6.
Summary Two cDNA clones containing the complete coding region of a developmentally controlled (tuber-specific) as well as environmentally inducible (wound-inducible) gene from potato (Solanum tuberosum) have been sequenced. The open reading frame codes for 154 amino acids. Its sequence is highly homologous to the proteinase inhibitor II from tomato, indicating that the cDNA's encode the corresponding proteinase inhibitor II of potato. In addition the putative potato proteinase inhibitor II contains a sequence which is completely homologous with that of another small peptide proteinase inhibitor from potato, called PCI-I. Evidence is presented that this small peptide is probably derived from the proteinase inhibitor II by posttranslational processing.Northern type experiments using RNA from wounded and nonwounded leaves demonstrate that RNA homologous to the putative proteinase inhibitor II cDNA's accumulates in leaves as a consequence of wounding, whereas normally the expression of this gene is under strict developmental control, since it is detected only in tubers of potato (Rosahl et al. 1986). In addition the induction of this gene in leaves can also be achieved by the addition of different polysaccharides such as poly galacturonic acid or chitosan. In contrast to the induction of its expression by wounding in leaves, wounding of tubers results in a disappearance of the proteinase II inhibitor m-RNA from these organs.  相似文献   

7.
W E Brown  K Takio  K Titani  C A Ryan 《Biochemistry》1985,24(9):2105-2108
The primary structure of the wound-inducible trypsin inhibitor from alfalfa (ATI) establishes it as a member of the Bowman-Birk proteinase inhibitor family. The time course of induction of ATI in alfalfa following wounding is similar to the induction of the nonhomologous proteinase inhibitors I and II in tomato and potato leaves, and, like inhibitors I and II, ATI is induced to accumulate in excised leaves supplied with the proteinase inhibitor inducing factor from tomato leaves. The similarity of the wound induction of ATI to that of inhibitors I and II indicates that wound-regulated systems are present in Solanaceae and Leguminosae plant families that possess a common fundamental recognition system regulating synthesis of proteinase inhibitors in response to pest attacks. ATI is the first Bowman-Birk inhibitor that has been found in leaves and is the only member of this family known to be regulated by wounding.  相似文献   

8.
cDNAs encoding two Bowman-Birk proteinase inhibitors were isolated from the leaves of alfalfa (Medicago sativa). The cDNAs are derived from a small gene family (3 to 10 genes) encoding alfalfa trypsin inhibitors (ATIs). Each cDNA clone encoded a mature ATI that was part of a larger, putative preprotein. ATI mRNAs are continuously expressed in flower parts, but are mechanically wound-inducible in the stems and leaves. ATI mRNA is shown to be continuously present in roots of soil-grown plants, but its presence is primarily in response to microorganisms present in the soil. Additionally, while mechanical wounding of the alfalfa roots induced ATI mRNA synthesis both in the roots and in the leaves, microbial infection of the roots triggered ATI mRNA synthesis in the roots but not in the leaves. These results suggest that both local and systemic signalling pathways for proteinase inhibitor synthesis are present in alfalfa plants.  相似文献   

9.
The expression of chloramphenical acetyl transferase (CAT) protein driven by the wound-inducible promoter from the proteinase inhibitor II K (pin2) gene was examined in whole tobacco (Nicotiana tabacum L.) plants under field conditions. Mechanical wounding of the field-grown leaves caused an accumulation of CAT protein in these leaves which begins several hours after wounding and continues to accumulate for about 36 hours. When sections of leaves were assayed for accumulation of CAT protein following wounding, the CAT protein was found to accumulate in the apical portions of the leaves. When endogenous insects attacked the leaves of transgenic plants grown in the field, the plants responded by inducing CAT protein. The mesophyll cells of the leaf were the site of expression of the CAT protein rather than the mid-vein or major veins within the leaf blade, indicating that the wound-inducible pin2 promoter specifically directs the synthesis of novel genes in tissues preferentially consumed by larval insects.  相似文献   

10.
Mechanical damage to leaf tissue causes an increase in abscisic acid (ABA) which in turn activates the biosynthesis of jasmonic acid (JA). The resulting higher endogenous JA levels subsequently activate the expression of wound-inducible genes. This study shows that JA induces the expression of different sets of genes in roots and leaves of potato plants. When roots of intact plants were treated with JA, high levels of proteinase inhibitor II (pin2), cathepsin D inhibitor, leucine aminopeptidase and threonine deaminase mRNAs accumulated in the systemic leaves. However, in the treated roots, very low, if any, expression of these genes could be detected. In contrast, a novel, root-specific pin2 homologue accumulated in the JA-treated root tissue which could not be detected in leaves, either systemic or those directly treated with JA. Application of okadaic acid and staurosporine revealed that a protein phosphorylation step is involved in the regulation of this differential response. In leaves, a protein phosphatase is required for the JA-induced expression of pin2 and the other genes analysed. This phosphatase activity is not necessary for the JA-induced expression of a pin2 homologue in roots, suggesting the existence of different transduction pathways for the JA signal in these organs. The requirement of a protein phosphatase activity for JA-mediated gene induction has enabled identification of a JA-independent pathway for ABA induction of pin2 and the other wound-inducible genes. This alternative pathway involves a protein kinase, and appears to be selective for wound-inducible genes. Our data suggest the presence of a complex, organ-specific transduction network for regulating the effects of the plant hormones ABA and JA on gene expression upon wounding.  相似文献   

11.
12.
A cDNA library of tobacco mosaic virus (TMV)-infected tobacco was screened with polymerase chain reaction products obtained using a degenerate primer corresponding to proteinase inhibitor I (PI-I) of tomato and potato. The resulting clones encoded two highly similar, putative tobacco PI-I proteins, indicating that both genes identified in tobacco are probably expressed. The tobacco PI-I's were approximately 50% identical to wound-inducible potato and tomato PI-I and 80% identical to an ethylene-regulated tomato PI-I. Northern blot analyses indicated that healthy tobacco leaf contains only minor amounts of PI-I mRNA, and that the inhibitor genes are induced by TMV infection, salicylate treatment, ethephon spraying, UV light irradiation and wounding. The results indicate that the tobacco PI-I genes are coordinately expressed with the genes for the basic pathogenesis-related proteins. Contrary to PI-I genes of tomato and potato, wound induction of the tobacco genes occurs only locally; the upper, unwounded leaves do not show any wound-induced PI-I gene expression.  相似文献   

13.
14.
In tobacco plants, wounding induces production of a set of defense-related proteins such as basic pathogenesis-related (PR) proteins and proteinase inhibitors (PIs) via the jasmonate/ethylene pathway. Although class III plant peroxidase (POX) is also wound-inducible, the regulatory mechanism for its wound-induced expression is not fully understood. Here, we describe that a tobacco POX gene (tpoxN1), which is constitutively expressed in roots, is induced locally 30 min after wounding and then systemically in tobacco plants. Infection of necrotizing virus also induced tpoxN1 gene. The wound-induced expression was not enhanced by known wound-signal compounds such as methyl jasmonate (MeJA) and ethephon in contrast to other wound-inducible genes such as basic PR-1 and PI-II genes. And treatment with MeJA and coronatine, biological analogs of jasmonate, rather suppressed the tpoxN1 expression. Salicylic acid, an antagonist of jasmonate-based wound signaling, did not suppress the wound-induced expression of tpoxN1. Only spermine, which is reported as an endogenous inducer for acidic PR genes in tobacco mosaic virus-infected tobacco leaves, could induce tpoxN1 gene expression. These results suggest that wound-induced expression of the tpoxN1 gene is regulated differently from that of the basic PR and PI-II genes.  相似文献   

15.
Expression of proteinase inhibitor I and II genes was investigated during infection by Pseudomonas syringae pv. tomato, the causal agent of bacterial speck disease in tomato. Inoculation of leaves with P. s. pv. tomato of two inbred tomato lines that are resistant and susceptible to the pathogen resulted in the accumulation of proteinase inhibitor I and II mRNAs in this organ. Our data showed that in the lines used in this study, proteinase inhibitor II mRNAs accumulated in leaves to higher levels than proteinase inhibitor I mRNA in response to P. s. pv. tomato infection and wounding. Proteinase inhibitor II mRNAs accumulated more rapidly in disease-resistant than in disease-susceptible plants. Proteinase inhibitor I mRNAs were first detected in the disease-susceptible line during infection and wounding. In contrast to wounding, the systemic induction of these genes during pathogen ingression was limited. These data show that the plant proteinase inhibitors constitute one of the components of the plant defense system that are induced in response to bacterial pathogen invasion.  相似文献   

16.
17.
Proteinase inhibitors can be induced by wounding in shoots of tomato ( Lycopersicon esculentum [L.] Mill. cv. Moneymaker). These inhibitors are toxic to insects, but their ecological importance is not clear. Published work suggests that proteinase inhibitors may be wound-inducible in tomato only while the plants are young (less than 30 days). In the present investigation the influence of plant age on wound-inducible proteinase inhibitor was re-assessed using tomato plants grown in an outdoor polythene tunnel, with natural lighting and without supplementary heat. In contrast to previous findings, proteinase inhibitor was shown to be induced by wounding in plants of all ages. However, the systemic efficacy of wounds was much reduced in mature plants, possibly because such plants have outgrown the range of the wound-signalling system.  相似文献   

18.
A 1.2-kilobase pair fragment of the 5' upstream region of a potato wound-inducible gene (wun1) was fused to different marker genes (wun1-CAT, wun1-NPTII). Stable integration of a wun1-CAT chimeric gene into the tobacco genome led to a high wound-inducible chloramphenicol acetyltransferase activity in leaves. Transient expression experiments in potato protoplasts showed that wun1 carries a strong promoter sequence similar in strength to the 35S promoter. The same intensity of expression was also observed using wun1 constructs in transient experiments with rice protoplasts. wun1 mRNA was shown to accumulate to high levels in potato leaves collapsing as a result of infection with the phytopathogen Phytophthora infestans. The wun1 product might, therefore, play a role in a general physiological reaction to stress correlated with cell death.  相似文献   

19.
Proteinase inhibitor genes are expressed strongly in specific plant tissues under both developmental and environmental regulation. We have studied the role of the 3' control region of the potato proteinase inhibitor II gene (PI-II) that is inducible in leaves in response to herbivore attacks or other severe wounding. Comparison of the terminator from the PI-II gene with two different terminators from the 6b and 7 genes, driven by a common PI-II promoter-cat fusion molecule, indicated that the PI-II terminator provided the most efficient expression of cat. The PI-II terminator also caused a significantly elevated cat gene expression driven by the cauliflower mosaic virus 35S promoter. The increase in the level of expression is probably not due to the presence of an enhancer element in the PI-II terminator region, but to cis-acting elements involved in mRNA processing or stability. Both transient and stable transformation analyses of the deletion mutants in the 3'-flanking sequence indicated that about a 100-base pair DNA fragment surrounding the polyadenylation site is essential for the efficient gene expression. This region seems to consist of several regulatory elements, including the conserved sequence, CGTGTCTT, which is located 9 bases downstream from the polyadenylation site. The elements appear to contribute to the increased stability of mRNAs containing the PI-II terminator.  相似文献   

20.
A chimeric gene consisting of 1.3 kb of the 5' regulatory region of a member of the potato proteinase inhibitor II gene family, the coding region of the bacterial β-glucuronidase (GUS) gene and 260 bp of the proteinase inhibitor II 3'-untranslated region containing the poly(A) addition site was introduced into potato and tobacco by Agrobacterium tumefaciens mediated transformation. Analysis of transgenic plants demonstrates systemic, wound-inducible expression of this gene in stem and leaves of potato and tobacco. Constitutive expression was found in stolons and tubers of non-wounded potato plants. Histochemical experiments based on the enzymatic activity of the GUS protein indicate an association of the proteinase inhibitor II promoter activity with vascular tissue in wounded as well as in systemically induced non-wounded leaves, petioles, potato stems and in developing tubers. These data prove that one single member of the proteinase inhibitor II gene family contains cis-active elements, which are able to respond to both developmental and environmental signals. Furthermore they support the hypothesis of an inducing signal (previously called proteinase inhibitor inducing factor), which is released at the wound site and subsequently transported to non-wounded parts of the plant via the vascular system from where it is released to the surrounding tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号